Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (3): 81-88    DOI: 10.13523/j.cb.20180311
综述     
CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *
徐然1,2,陈松1*()
1 淮安市消化道肿瘤重点实验室 淮安市医药生物技术研究所 江苏护理职业学院 淮安 223001
2 南通大学医学院 南通 226000
Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases
Ran XU1,2,Song CHEN1*()
1 Huai’an Key Laboratory of Gastrointestinal Cancer, Huai’an Institute of Medical Biotechnology, Jiangsu College of Nursing, Huai’an 223001, China;
2 Medical School of Nantong University,Nantong 226000,China
 全文: PDF(975 KB)   HTML
摘要:

CRISPR/Cas9系统是细菌体在长期进化过程中抵御病毒或噬菌体DNA的一种适应性免疫系统。尽管近年来的一些基因编辑技术,如锌指核酸酶、转录激活因子效应物核酸酶等已经给基因编辑带来了许多便利,但CRISPR/Cas9系统以其独特的优势,给基因编辑领域带来了革命性的变化。CRISPR/Cas9系统在生物研究、基因相关疾病的治疗、疾病的基因水平研究等多方面都有广泛的应用。综述近年来CRISPR/Cas9运输系统的研究进展及其在基因缺陷疾病方面取得的应用成果,分析慢病毒和腺相关病毒运载基因编辑元件的利弊,并探讨CRISPR/Cas9系统在基因编辑效率方面的影响因素及仍然存在的问题。

关键词: CRISPR/Cas9运输系统基因相关疾病基因编辑    
Abstract:

The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is an adaptive immune system. CRISPR/Cas9 technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. In recent years, some of the gene editing techniques, such as Zinc finger nuclease and transcriptional activator-like effector nuclease, have brought a lot of convenience to gene editing. But CRISPR/Cas9 system with its unique features has brought a revolutionary change to the field of gene editing. CRISPR/Cas9 technology has been widely used in the fields of biological research, the treatment of gene-related diseases, and the research of disease in gene level. The research progress of CRISPR/Cas9 delivery system and its application in genetic diseases are reviewed, and the pros and cons of lentivirus and adeno-associated virus vectors in the delivery of gene editing elements are discussed,and the problems that still exist in the CRISPR/Cas9 system are explored.

Key words: CRISPR/Cas9 delivery system    Gene-related diseases    Gene editing
收稿日期: 2017-07-28 出版日期: 2018-04-04
ZTFLH:  Q812  
基金资助: 国家自然科学基金(81572877);江苏省自然科学基金(SBK2015021930);淮安市应用研究与科技攻关(社会发展)计划(HAS2014015)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐然
陈松

引用本文:

徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.

Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases. China Biotechnology, 2018, 38(3): 81-88.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180311        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I3/81

图1  CRISPR/Cas系统基本结构
图2  CRISPR/Cas9系统作用机制[12]
图3  dCas9和Nickase作用机制[15]
[1] Cox D B T, Platt R J, Zhang F . Therapeutic genome editing: prospects and challenges. Nat Med, 2015,21(2):121-131.
doi: 10.1038/nm.3793 pmid: 25654603
[2] Capecchi M R . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292.
doi: 10.1126/science.2660260
[3] Bogdanove A J, Voytas D F . TAL effectors: customizable proteins for DNA targeting. Science, 2011,333(6051):1843-1846.
doi: 10.1126/science.1204094
[4] Brouns S J, Jore M M, Lundgren M , et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008,321(5891):960-964.
doi: 10.1126/science.1159689 pmid: 18703739
[5] Hsu P D, Lander E S, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 pmid: 4343198
[6] Jansen R, Embden J D, Gaastra W , et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905
[7] Mojica F J, Garcia-Martinez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005,60(2):174-182.
doi: 10.1007/s00239-004-0046-3 pmid: 15791728
[8] Magadan A H, Dupuis M E, Villion M , et al. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system, PLoS One, 2012,7(7):e40913.
doi: 10.1371/journal.pone.0040913 pmid: 22911717
[9] Makarova K S, Grishin N V, Shabalina S A , et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 2006,1(1):7.
doi: 10.1186/1745-6150-1-7
[10] Jansen R, van Embden J D, Gaastra W , et al. identification of a novel family of sequence repeats among prokaryotes. Omics: A Journal of Integrative Biology, 2002,6(1):22-23.
doi: 10.1089/15362310252780816 pmid: 11883425
[11] Bolotin A, Quinquis B, Sorokin A , et al. Clustered regularly interspaced short palindrome repeats(CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005,151(pt 8):2551-2561.
doi: 10.1099/mic.0.28048-0
[12] Savic N, Schwank G . Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res, 2016,168:15-21.
doi: 10.1016/j.trsl.2015.09.008 pmid: 26470680
[13] Makarova K S, Haft D H, Barrangou R , et al. Evolution and classification of the CRISPR-Cas system. Nat Rev Microbiol, 2011,9(6):467-477.
doi: 10.1038/nrmicro2577 pmid: 21552286
[14] Nishimasu H, Ran F A, Hsu P D , et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-945.
doi: 10.1016/j.cell.2014.02.001 pmid: 24529477
[15] Malzahn A, Lowder L, Qi Y . Plant genome editing with TALEN and CRISPR. Cell Biosci, 2017,19(7):21.
doi: 10.1186/s13578-017-0148-4 pmid: 54042921
[16] Wang M, Glass Z, Xu Q . Non-viral delivery of genome editing nucleases for gene therapy. Gene Ther, 2017,24(3):144.
doi: 10.1038/gt.2016.72 pmid: 27797355
[17] Ain Q U, Chung J Y, Kim Y H . Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Controlled Release, 2015,200(205):120-127.
doi: 10.1016/j.jconrel.2014.12.036 pmid: 25553825
[18] Yin H, Kanasty R L, Eltoukhy A A , et al. Non-viral vectors for gene-based therapy. Nat Rev Genet, 2014,15(8):541-555.
doi: 10.1038/nrg3763 pmid: 25022906
[19] Liang X, Potter J, Kumar S , et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol, 2015,208(32):44-53.
doi: 10.1016/j.jbiotec.2015.04.024 pmid: 26003884
[20] Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80.
doi: 10.1038/nbt.3081 pmid: 25357182
[21] Yin H, Song C Q, Dorkin J R , et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol, 2016,34(3):328-333.
doi: 10.1038/nbt.3471 pmid: 5423356
[22] Zhen S, Hua L, Liu Y , et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 2015,22(5):404-412.
doi: 10.1038/gt.2015.2 pmid: 25652100
[23] Ebina H, Misawa N, Kanemura Y , et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013,3(5):2510.
doi: 10.1038/srep02510
[24] Ramakrishna S, Dad A K, Beloor J , et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res, 2014,24(6):1020-1027.
doi: 10.1101/gr.171264.113
[25] Wang T, Wei J J , Sabatini, et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014,343(6166):80-84.
doi: 10.1126/science.1246981 pmid: 24336569
[26] Shalem O, Sanjana N E, Hartenian E , et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343(6166):84-87.
doi: 10.1126/science.1247005 pmid: 4089965
[27] Koike-Yusa H, Li Y, Tan E P , et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-Guide RNA library. Nat Biotechnol, 2014,32(3):267-273.
doi: 10.1038/nbt.2800 pmid: 24535568
[28] Matrai J, Chuah M K, Vanden Driessche T . Recent advances in lentiviral vector development and applications. Mol Ther, 2010,18(3):477-490.
doi: 10.1038/mt.2009.319 pmid: 20087315
[29] Kotterman M A, Schaffer D V . Engineering adeno associated viruses for clinical gene therapy. Nat Rev Genet, 2014,15(7):445-451.
doi: 10.1038/nrg3742 pmid: 24840552
[30] McCarty D M, Young S M Jr, Samulski R J . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet, 2004,38:819-845.
doi: 10.1146/annurev.genet.37.110801.143717 pmid: 15568995
[31] Platt R J, Chen S, Zhou Y , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(2):440-455.
doi: 10.1016/j.cell.2014.09.014 pmid: 25263330
[32] Wu Z, Yang H, Colosi P . Effect of genome size on AAV vector packaging. Mol Ther. 2010,18(1):80-86.
doi: 10.1038/mt.2009.255
[33] Ran F A, Cong L, Yan W X , et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191.
doi: 10.1038/nature14299
[34] Esvelt K M, Mali P, Braff J L , et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 2013,10(11):1116-1121.
doi: 10.1038/nmeth.2681 pmid: 3844869
[35] Swiech L, Heidenreich M, Banerjee A , et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 2015,33(1):102-106.
doi: 10.1038/nbt.3055 pmid: 4492112
[36] Truong D J, Kuhner K, Kuhn R , et al. Development of an intein-mediated split- Cas9 system for gene therapy. Nucleic Acids Res, 2015,43(13):6450-6458.
doi: 10.1093/nar/gkv601 pmid: 4513872
[37] Xue W, Chen S, Yin H , et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014,514(7522):380-384.
doi: 10.1038/nature13589 pmid: 25119044
[38] Matano M, Date S, Shimokawa M , et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015,21(3):256-262.
doi: 10.1038/nm.3802 pmid: 25706875
[39] Zuckermann M, Hovestadt V , Knobbe-Thomsen C B, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun, 2015,6(3):7391.
doi: 10.1038/ncomms8391
[40] Heckl D, Kowalczyk M S, Yudovich D , et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol, 2014,32(9):941-946.
doi: 10.1038/nbt.2951 pmid: 4160386
[41] Carroll K J, Makarewich C A, Mcanally J , et al. Mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci USA, 2016,113(2):338-343.
doi: 10.1073/pnas.1523918113 pmid: 26719419
[42] Whitworth K M, Lee K, Benne J A , et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod, 2014,91(3):78.
[43] Horii T, Tamura D, Morita S , et al. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci, 2013,14(10):19774-19781.
doi: 10.3390/ijms141019774
[44] Wu Y, Liang D, Wang Y , et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013,13(6):659-662.
doi: 10.1016/j.stem.2013.10.016 pmid: 24315440
[45] Wu Y, Zhou H, Fan X , et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 2015,25(1):67-79.
doi: 10.1038/cr.2014.160
[46] Schwank G, Koo B K, Sasselli V , et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013,13(6):653-658.
doi: 10.1016/j.stem.2013.11.002 pmid: 24315439
[47] Long C , McAnally J R, Shelton J M, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 2014,345(6201):1184-1188.
doi: 10.1126/science.1254445 pmid: 25123483
[48] Yin H, Xue W, Chen S , et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014,32(6):551-553.
doi: 10.1038/nbt.2884 pmid: 4157757
[49] Ding Q, Strong A, Patel K M , et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res, 2014,115(5):488-492.
doi: 10.1161/CIRCRESAHA.115.304351 pmid: 4134749
[50] Ran F A, Cong L, Yan W X , et al. In vivo Genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191.
doi: 10.1038/nature14299
[51] Liu Y, Zeng Y, Liu L , et al. Synthesizing and gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun, 2014,5(6):5393.
doi: 10.1038/ncomms6393
[52] Ebina H, Misawa N, Kanemura Y , et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013,3(4):2510.
doi: 10.1038/srep02510
[53] Dong C, Qu L, Wang H , et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res, 2015,118(6):110-117.
doi: 10.1016/j.antiviral.2015.03.015 pmid: 25843425
[54] Nelles D A, Fang M Y, Aigner S , et al. Applications of Cas9 as an RNA-programmed RNA-binding protein. Bio Essays, 2015,37(7):732-739.
doi: 10.1002/bies.201500001 pmid: 25880497
[55] Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-823.
[56] Yin H, Song C Q, Dorkin J R , et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol, 2016,34(3):328-333.
doi: 10.1038/nbt.3471 pmid: 5423356
[57] Mali P, Yang L, Esvelt K M , et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033
[58] Chew W L, Tabebordbar M, Cheng J K , et al. Multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods, 2016,13(10):868-874.
doi: 10.1038/nmeth.3993 pmid: 27595405
[59] Wang D, Mou H, Li S , et al. Adenovirus- mediated somatic genome editing of PTEN by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther, 2015,26(7):432-442.
doi: 10.1089/hum.2015.087 pmid: 26086867
[60] Mali P, Yang L H, Esvelt K M , et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033
[61] Bikard D, Jiang W, Samai P , et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013,41(15):7429-7437.
doi: 10.1093/nar/gkt520 pmid: 23761437
[62] Xie K B, Zhang J W, Yang Y N . Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant, 2014,15(5):923-926.
doi: 10.1093/mp/ssu009 pmid: 24482433
[63] Kleinstiver B P, Prew M S, Tsai S Q , et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485.
doi: 10.1038/nature14592 pmid: 26098369
[1] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[2] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[3] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[4] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[5] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[6] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[7] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[8] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[9] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[10] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[11] 任爽, 朱鸿亮. Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立[J]. 中国生物工程杂志, 2017, 37(10): 72-80.
[12] 阿力玛, 高原, 苏小虎, 周欢敏. CRISPR/Cas9编辑绒山羊FGF5基因细胞株的建立[J]. 中国生物工程杂志, 2016, 36(7): 41-47.
[13] 堵晶晶, 李强, 程霄, 沈林園, 李学伟, 张顺华, 朱砺. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103.
[14] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[15] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.