Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (7): 92-103    DOI: 10.13523/j.cb.20160713
综述     
CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景
堵晶晶1, 李强2, 程霄1, 沈林園1, 李学伟1, 张顺华1, 朱砺1
1 四川农业大学动物科技学院 成都 611130;
2 四川省畜牧总站 成都 610041
Research Progress in CRISPR/Cas System and the Prospect in Animal Genetic Improvement
DU Jing-jing1, LI Qiang2, CHENG Xiao1, SHEN Lin-yuan1, LI Xue-wei1, ZHANG Shun-hua1, ZHU Li1
1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2 Sichuan Province General Station of Animal Husbandry, Chengdu 610041, China
 全文: PDF(1147 KB)   HTML
摘要:

广泛存在于细菌和古细菌中的CRISPR/Cas系统是通过介导外源DNA降解来实现抵抗病毒和外源DNA入侵的一种适应性免疫保护机制,也是新近发展起来的基因组定点编辑技术。从基本结构、作用机制、分类、运用等方面详细地介绍了CRISPR/Cas系统,并分析了该技术在畜禽遗传改良中的运用前景。

关键词: CRISPR/Cas系统基因编辑遗传改良免疫保护    
Abstract:

CRISPR/Cas system widely exists in the bacteria and archaea which is an adaptive immune mechanism of protection by mediating the degradation of exogenous DNA to achieve resistance against invading viruses and exogenous DNA and it is a newly developed genome fixed-point editing techniques. The basic structure, mechanism of action, classification, application and other aspects of the CRISPR/Cas system were introduced, and analyzes the prospect of applying it in animal genetic improvement.

Key words: Gene editing    Genetic improvement    CRISPR/Cas system    Immune protection
收稿日期: 2016-01-12 出版日期: 2016-03-02
ZTFLH:  Q756  
基金资助:

四川省科技支撑计划项目(2013NZ0041),国家科技支撑计划项目(2013BAD20B07),教育部长江学者和创新团队发展计划(IRT13083),四川省科技富民强县专项行动计划资助项目

通讯作者: 张顺华, 朱砺     E-mail: 363445986@qq.com;zhuli7508@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
堵晶晶
李强
程霄
沈林園
李学伟
张顺华
朱砺

引用本文:

堵晶晶, 李强, 程霄, 沈林園, 李学伟, 张顺华, 朱砺. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103.

DU Jing-jing, LI Qiang, CHENG Xiao, SHEN Lin-yuan, LI Xue-wei, ZHANG Shun-hua, ZHU Li. Research Progress in CRISPR/Cas System and the Prospect in Animal Genetic Improvement. China Biotechnology, 2016, 36(7): 92-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160713        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I7/92

[1] Mussolino C,Cathomen T.RNA guides genome engineering.Nat Biotechnol,2013,31(3):208-209.
[2] Pan Y,Xiao L,Li A S,et al.Biological and biomedical applications of engineered nucleases.Molecular Biotechnology,2013,55(1):54-62.
[3] Sander J D,Joung J K.CRISPR-Cas systems for editing,regulating and targeting genomes.Nat Biotechnol,2014,32(4):347-355.
[4] Ramalingam S,London V,Kandavelou K,et al.Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.Stem Cells Dev,2013,22(4):595-610.
[5] Dong P,Yu F,Fan X,et al.Inhibition of ATIR by shRNA prevents collagen synthesis in hepatic stellate cells.Molecular and Cellular Biochemistry,2010,344(1-2):195-202.
[6] Carroll D,Beumer K J.Genome engineering with TALENs and ZFNs:repair pathways and donor design.Methods,2014,69(2):137-141.
[7] Bedell V M,Wang Y,Campbell J M,et al.In vivo genome editing using a high-efficiency TALEN system.Nature,2012,491(7422):114-118.
[8] Sung Y H,Baek I J,Kim D H,et al.Knockout mice created by TALEN-mediated gene targeting.Nat Biotechnol,2013,31(1):23-24.
[9] Matzke M A,Mosher R A.RNA-directed DNA methylation:an epigenetic pathway of increasing complexity.Nature Reviews Genetics,2014,15(6):394-408.
[10] Wang H,Yang H,Shivalila C S,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell,2013,153(4):910-918.
[11] Chylinski K,Makarova K S,Charpentier E,et al.Classification and evolution of type Ⅱ CRISPR-Cas systems.Nucleic Acids Res,2014,42(10):6091-6105.
[12] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
[13] Alaiyan B,Ilyayev N,Stojadinovic A,et al.Differential expression of colon cancer associated transcript1(CCAT1) along the colonic adenoma-carcinoma sequence.BMC cancer,2013,13(1):196.
[14] Westra E R,Swarts D C,Staals R H,et al.The CRISPRs,they are a-changin:how prokaryotes generate adaptive immunity.Annu Rev Genet,2012,46:311-339.
[15] Labrie S J,Samson J E,Moineau S.Bacteriophage resistance mechanisms.Nat Rev Microbiol,2010,8(5):317-327.
[16] Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes.Science,2007,315(5819):1709-1712.
[17] Marraffini L A,Sontheimer E J.CRISPR interference:RNA-directed adaptive immunity in bacteria and archaea.Nature Reviews Genetics,2010,11(3):181-190.
[18] Lillestøl R,Redder P,Garrett R A,et al.A putative viral defence mechanism in archaeal cells.Archaea,2006,2(1):59-72.
[19] Mojica F J,García-Martínez J,Soria E.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.Journal of Molecular Evolution,2005,60(2):174-182.
[20] Magadán A H,Dupuis M-È,Villion M,et al.Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system.PLoS One,2012,7(7):e40913.
[21] Bland C,Ramsey T L,Sabree F,et al.CRISPR recognition tool (CRT):a tool for automatic detection of clustered regularly interspaced palindromic repeats.BMC Bioinformatics,2007,8(1):209.
[22] Jansen R,Embden J,Gaastra W,et al.Identification of genes that are associated with DNA repeats in prokaryotes.Molecular Microbiology,2002,43(6):1565-1575.
[23] Deveau H,Garneau J E,Moineau S.CRISPR/Cas system and its role in phage-bacteria interactions.Annual review of Microbiology,2010,64:475-493.
[24] Makarova K S,Grishin N V,Shabalina S A,et al.A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery,functional analogies with eukaryotic RNAi,and hypothetical mechanisms of action.Biology Direct,2006,1(1):7.
[25] Jansen R,van Embden J D,Gaastra W,et al.Identification of a novel family of sequence repeats among prokaryotes.Omics:A Journal of Integrative Biology,2002,6(1):23-33.
[26] Pourcel C,Salvignol G,Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies.Microbiology,2005,151(3):653-663.
[27] Haft D H,Selengut J,Mongodin E F,et al.A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.PLoS Computational Biology,2005,1(6):e60.
[28] Makarova K S,Haft D H,Barrangou R,et al.Evolution and classification of the CRISPR-Cas systems.Nature Reviews Microbiology,2011,9(6):467-477.
[29] Han D,Krauss G.Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.FEBS Letters,2009,583(4):771-776.
[30] Wiedenheft B,Zhou K,Jinek M,et al.Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense.Structure,2009,17(6):904-912.
[31] Beane J D,Lee G K,Zheng Z,et al.Clinical scale zinc finger nuclease (ZFN)-driven gene-editing of PD-1 in tumor infiltrating lymphocytes (TIL) for the potential treatment of metastatic melanoma.Journal for Immunotherapy of Cancer,2014,2(Suppl 3):P2.
[32] Wood A J,Lo T-W,Zeitler B,et al.Targeted genome editing across species using ZFNs and TALENs.Science,2011,333(6040):307-307.
[33] Umasankar P K,Ma L,Thieman J R,et al.A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing.eLife,2014,10(3):1-33.
[34] Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes.Science,2007,315(5819):1709-1712.
[35] Li T,Du B.CRISPR-Cas system and coevolution of bacteria and phages.Hereditas,2011,33(3):213-218.
[36] Garneau J E,Dupuis M-È,Villion M,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.Nature,2010,468(7320):67-71.
[37] Beloglazova N,Brown G,Zimmerman M D,et al.A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats.Journal of Biological Chemistry,2008,283(29):20361-20371.
[38] Koonin E V,Wolf Y I.Genomics of bacteria and archaea:the emerging dynamic view of the prokaryotic world.Nucleic Acids Research,2008,36(21):6688-6719.
[39] Sorek R,Kunin V,Hugenholtz P.CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea.Nature Reviews Microbiology,2008,6(3):181-186.
[40] Bolotin A,Quinquis B,Sorokin A,et al.Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.Microbiology,2005,151(8):2551-2561.
[41] Horvath P,Romero D A,Coûté-Monvoisin A C,et al.Diversity,activity,and evolution of CRISPR loci in Streptococcus thermophilus.Journal of Bacteriology,2008,190(4):1401-1412.
[42] Lillestøl R K,Shah S A,Brügger K,et al.CRISPR families of the crenarchaeal genus Sulfolobus:bidirectional transcription and dynamic properties.Molecular Microbiology,2009,72(1):259-272.
[43] Mojica F,Diez-Villasenor C,Garcia-Martinez J,et al.Short motif sequences determine the targets of the prokaryotic CRISPR defence system.Microbiology,2009,155(3):733-740.
[44] Gudbergsdottir S,Deng L,Chen Z,et al.Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers.Molecular Microbiology,2011,79(1):35-49.
[45] Swarts D C,Mosterd C,Van Passel M W,et al.CRISPR interference directs strand specific spacer acquisition.PloS One,2012,7(4):e35888.
[46] Westra E R,van Erp P B,Künne T,et al.CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3.Molecular Cell,2012,46(5):595-605.
[47] Semenova E,Jore M M,Datsenko K A,et al.Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.Proceedings of the National Academy of Sciences,2011,108(25):10098-10103.
[48] Zhang J,Rouillon C,Kerou M,et al.Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity.Molecular Cell,2012,45(3):303-313.
[49] Marraffini L A,Sontheimer E J.Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature,2010,463(7280):568-571.
[50] Agari Y,Sakamoto K,Tamakoshi M,et al.Transcription profile of Thermus thermophilus CRISPR systems after phage infection.Journal of Molecular Biology,2010,395(2):270-281.
[51] Kunin V,Sorek R,Hugenholtz P.Evolutionary conservation of sequence and secondary structures in CRISPR repeats.Genome Biol,2007,8(4):R61.
[52] Marraffini L A,Sontheimer E J.Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature,2010,463(7280):568-571.
[53] Mojica F J,Díez-Villaseñor C.The on-off switch of CRISPR immunity against phages in Escherichia coli.Molecular Microbiology,2010,77(6):1341-1345.
[54] Pul V,Wurm R,Arslan Z,et al.Identification and characterization of E.coli CRISPR-cas promoters and their silencing by H-NS,Molecular Microbiology,2010,75(6):1495-1512.
[55] Westra E R,Pul V,Heidrich N,et al.H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO.Molecular Microbiology,2010,77(6):1380-1393.
[56] Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea.Science,2010,327(5962):167-170.
[57] Marraffini L A,Sontheimer E J.CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.Science,2008,322(5909):1843-1845.
[58] Hale C R,Zhao P,Olson S,et al.RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.Cell,2009,139(5):945-956.
[59] Van der Oost J,Brouns S J.RNAi:prokaryotes get in on the act.Cell,2009,139(5):863-865.
[60] Sinkunas T,Gasiunas G,Fremaux C,et al.Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.The EMBO journal,2011,30(7):1335-1342.
[61] Wiedenheft B,van Duijn E,Bultema J B,et al.RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions.Proceedings of the National Academy of Sciences,2011,108(25):10092-10097.
[62] Haurwitz R E,Jinek M,Wiedenheft B,et al.Sequence-and structure-specific RNA processing by a CRISPR endonuclease.Science,2010,329(5997):1355-1358.
[63] Friedland A E,Tzur Y B,Esvelt KM,et al.Heritable genome editing in C.elegans via a CRISPR-Cas9 system.Nature Methods,2013,10(8):741-743.
[64] Deltcheva E,Chylinski K,Sharma C M,et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ.Nature,2011,471(7340):602-607.
[65] Anantharaman V,Iyer L M,Aravind L.Discovery notes presence of a classical RRM-fold palm domain in Thg1-type 3'-5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains,2010,5(43):1-9.
[66] Cermak T,Doyle E L,Christian M,et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Nucleic Acids Research,2011,39(12):H1.
[67] Jiang W,Bikard D,Cox D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nature Biotechnology,2013,31(3):233-239.
[68] Mali P,Yang L,Esvelt K M,et al.RNA-guided human genome engineering via Cas9.Science,2013,339(6121):823-826.
[69] Hwang W Y,Fu Y,Reyon D,et al.Efficient genome editing in zebrafish using a CRISPR-Cas system.Nature Biotechnology,2013,31(3):227-229.
[70] Brouns S J,Jore M M,Lundgren M,et al.Small CRISPR RNAs guide antiviral defense in prokaryotes.Science,2008,321(5891):960-964.
[71] Jinek M,East A,Cheng A,et al.RNA-programmed genome editing in human cells.Elife,2013,2(e00471):1-9.
[72] Cho S W,Kim S,Kim J M,et al.Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.Nature Biotechnology,2013,31(3):230-232.
[73] Ding Q,Regan S N,Xia Y,et al.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs.Cell Stem Cell,2013,12(4):393.
[74] Qi L S,Larson M H,Gilbert L A,et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell,2013,152(5):1173-1183.
[75] Schwank G,Koo B-K,Sasselli V,et al.Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.Cell Stem Cell,2013,13(6):653-658.
[76] Wu Y,Liang D,Wang Y,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9.Cell Stem Cell,2013,13(6):659-662.
[77] Raghavan A,Peters D,Kuperwasser N,et al.Functional characterization of a Cis-eQTL locus for plasma cholesterol using CRISPR/Cas genome editing in human pluripotent stem cells.Arteriosclerosis,Thrombosis,and Vascular Biology,2014,34(Suppl 1):A242-A242.
[78] Chen B,Gilbert L A,Cimini B A,et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.Cell,2014,156(1):373.
[79] Deans J R,Titova N V,Wickramaratne A,et al.SAT-272:Verifying affinity altering SNPs with Crispr/Cas system in HepG2 Cells.2015.
[80] Wang H,Yang H,Shivalila C S,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell,2013,153(4):910-918.
[81] Li W,Teng F,Li T,et al.Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems.Nature Biotechnology,2013,31(8):684-686.
[82] Carlson D F,Tan W,Lillico S G,et al.Efficient TALEN-mediated gene knockout in livestock.Proceedings of the National Academy of Sciences,2012,109(43):17382-17387.
[83] Yu S,Luo J,Song Z,et al.Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle.Cell Research,2011,21(11):1638-1640.
[84] Kennedy E M,Bassit LC,Mueller H,et al.Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease.Virology,2015,2(476):196-205.
[85] Kennedy E M,Kornepati A V,Goldstein M,et al.Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.J Virol,2014,88(20):11965-11972.
[86] Yang H,Wang H,Jaenisch R.Generating genetically modified mice using CRISPR/Cas-mediated genome engineering.Nat Protoc,2014,9(8):1956-1968.
[87] Li X,Yang Y,Bu L,et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing.Cell Res,2014,24(4):501-504.
[88] Hwang W Y,Fu Y,Reyon D,et al.Efficient genome editing in zebrafish using a CRISPR-Cas system.Nat Biotechnol,2013,31(3):227-229.
[89] Wang H C,Yang Y,Xu S Y,et al.The CRISPR/Cas system inhibited the pro-oncogenic effects of alternatively spliced fibronectin extra domain A via editing the genome in salivary adenoid cystic carcinoma cells.Oral Dis,2015,21(5):608-618.
[90] Niu Y,Shen B,Cui Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell,2014,156(4):836-843.
[91] Ramírez O,Quintanilla R,Varona L,et al.DECR1 and ME1 genotypes are associated with lipid composition traits in Duroc pigs.Journal of Animal Breeding and Genetics,2014,131(1):46-52.
[92] Hua T,Wu D,Ding W,et al.Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids.Journal of Biological Chemistry,2012,287(34):28956-28965.
[93] Zanou N,Gailly P.Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.Cellular and Molecular Life Sciences,2013,70(21):4117-4130.
[94] Zhu C,Gi G,Tao Z,et al.Development of skeletal muscle and expression of myogenic regulatory factors during embryonic development in Jinding ducks (Anas platyrhynchos domestica).Poultry Science,2014,93(5):1211-1216.
[95] Choi Y,Suh Y,Ahn J,et al.Muscle hypertrophy in heavy weight Japanese quail line:Delayed muscle maturation and continued muscle growth with prolonged upregulation of myogenic regulatory factors.Poultry Science,2014,93(9):2271-2277.
[96] McPherron A C,Lee S J.Double muscling in cattle due to mutations in the myostatin gene.Proceedings of the National Academy of Sciences,1997,94(23):12457-12461.
[97] Hamilton D N,Ellis M,Miller K D,et al.The effect of the Halothane and Rendement Napole genes on carcass and meat quality characteristics of pigs.Journal of Animal Science-Menasha Then Albany Then Champaign Illinois,2000,78(11):2862-2867.
[98] Gispert M,Faucitano L,Oliver M,et al.A survey of pre-slaughter conditions,halothane gene frequency,and carcass and meat quality in five Spanish pig commercial abattoirs.Meat Science,2000,55(1):97-106.
[99] Zou Q,Wang X,Liu Y,et al.Generation of gene-target dogs using CRISPR/Cas9 system.Journal of Molecular Cell Biology,2015,7(6):580-583.
[100] Davies K T,Tsagkogeorga G,Bennett N C,et al.Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived,small-bodied mammals.Gene,2014,549(2):228-236.
[101] Standen P,Sferruzzi-Perri A N,Taylor R,et al.Maternal insulin-like growth factor 1 and 2 differentially affect the renin-angiotensin system during pregnancy in the guinea pig.Growth Hormone&IGF Research,2015,25(3):141-147.
[102] Klimenko A,Usatov A,Getmantseva L,et al.Effects of melanocortin-4 receptor gene on growth and meat traits in pigs raised in russia.American Journal of Agricultural and Biological Sciences,2014,9(2):232.
[103] Zuo B,Liu G,Peng Y,et al.Melanocortin-4 receptor (MC4R) polymorphisms are associated with growth and meat quality traits in sheep.Molecular Biology Reports,2014,41(10):6967-6974.
[104] Chu Q,Cai L,Fu Y,et al.Dkk2/Frzb in the dermal papillae regulates feather regeneration.Developmental Biology,2014,387(2):167-178.
[105] Wang Z,Li Q,Zhang B,et al.Single nucleotide polymorphism scanning and expression of the FRZB gene in pig populations.Gene,2014,543(2):198-203.
[106] Van Laere A S,Nguyen M,Braunschweig M,et al.A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig.Nature,2003,425(6960):832-836.
[107] Houston F,Goldmann W,Foster J,et al.Comparative susceptibility of New Zealand sheep with a range of PRNP genotypes to challenge with bovine spongiform encephalopathy and scrapie.In:PRION;2014:Landes Bioscience 1806 Rio Grandest,Austin,TX 78702 USA,2014:102-102.
[108] Czarnik U,Strychalski J,Barcewicz M,et al.The effect of insertion/deletion polymorphisms within the promoter and intron 1 sequences of the PRNP gene on the breeding value of Holstein-Friesian bulls.Animal Science Papers and Reports,2015,33(1):13-22.

[1] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[2] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[3] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[6] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[9] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[10] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[11] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[12] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.
[13] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[14] 任爽, 朱鸿亮. Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立[J]. 中国生物工程杂志, 2017, 37(10): 72-80.
[15] 阿力玛, 高原, 苏小虎, 周欢敏. CRISPR/Cas9编辑绒山羊FGF5基因细胞株的建立[J]. 中国生物工程杂志, 2016, 36(7): 41-47.