Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 29-39    DOI: 10.13523/j.cb.20180705
研究报告     
钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究 *
舒群峰,徐美娟(),李静,张显,杨套伟,许正宏,饶志明()
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Producing L-ornithine by Heterologous Expression of N-acetyl-L-ornithine Deacetylase in Corynebacterium crenatum
Qun-feng SHU,Mei-juan XU(),Jing LI,Xian ZHANG,Tao-wei YANG,Zheng-hong XU,Zhi-ming RAO()
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1260 KB)   HTML
摘要:

目的:对一株产鸟氨酸的钝齿棒杆菌Corynebacterium crenatum SYPA5-5/△proB/argF (SYPO-1) 进行代谢工程改造,筛选不同细菌来源的N-乙酰鸟氨酸脱乙酰基酶在大肠杆菌中克隆与表达,纯化后对其进行酶学性质的比较;将黏质沙雷氏菌Serratia marcescens Y213来源的SmargE基因编码的N-乙酰鸟氨酸脱乙酰基酶在L-鸟氨酸生产菌株C. crenatum SYPO-1中过量表达,进一步提高L-鸟氨酸的产量。方法:通过利用pDXW10穿梭质粒对不同来源的N-乙酰鸟氨酸脱乙酰化酶进行克隆表达和酶学性质比较,选择性质最优来源的N-乙酰鸟氨酸脱乙酰基酶编码基因SmargE在产L-鸟氨酸重组钝齿棒杆菌中表达,考察重组菌株发酵过程中参数的变化。结果:来源于S. marcescens Y213的N-乙酰鸟氨酸脱乙酰基酶比酶活最高为798.98U/mg,最适pH为7,最适温度为37℃,0.1mmol/L的Mg2+、Li+、Mn2+促进酶的比酶活提高了50%;在钝齿棒杆菌中表达N-乙酰鸟氨酸脱乙酰基酶酶活达到128.4U/ml,显著提高了钝齿棒杆菌中胞内乙酰基循环水平;5L发酵罐发酵重组菌株96h,L-鸟氨酸的产量达到38.5g/L,比出发菌株,L-鸟氨酸的产量提高了33.2%,产率达0.401g/(L·h)。结论:筛选出最佳来源的N-乙酰鸟氨酸脱乙酰基酶,在鸟氨酸生产菌株C. crenatum (SYPO-1)中过量表达,可以促进鸟氨酸的前体物质N-乙酰鸟氨酸的快速消耗,实现鸟氨酸的积累。

关键词: L-鸟氨酸钝齿棒杆菌N-乙酰鸟氨酸脱乙酰基酶argE    
Abstract:

Objective: The metabolic pathway engineering of Corynebacterium crenatum SYPA5-5/△proB/△argF (SYPO-1) has been performed to further enhance the pathway flux of L-ornithine biosynthesis. Firstly, the four genes encoding N-acetyl-L-ornithine deacetylase (NAOD) from different bacterial sources were screened, cloned and expressed in Escherichia coli BL21 (DE3). Then the recombinant NAODs were purified and characterized. The argE gene from Serratia marcescens Y213 was overexpressed in the L-ornithine producing strain C. crenatum SYPO-1 to increase the L-ornithine production. Methods: The genes from different sources were sub-cloned into the pDXW10 plasmid and expressed under the tacM promoter in E. coli BL21(DE3). Then the recombinant N-acetyl-L-ornithine deacetylation were purified and their characterization were studied. The optimal N-acetyl-L-ornithine deacetylase was expressed in recombinant C. crenatum. The parameters of the recombinant strains during fermentation were also investigated. Results: The recombinant argE coding NAOD enzyme from S. marcescens showed a very higher activity than the other NAOD enzymes from E. coli BL21(DE3), K. pneumoniae and B. subtilis, the activity was 798.98U / mg, the optimum pH and temperature were 7℃ and 37℃ respectively. SmNAOD was expressed in C. crenatum, and the activity was 128.4U/ml, which was significantly increasing intracellular acetyl cycle levels. At the end of fermentation, L-ornithine yield increased to 38.5g/L with the overall productivity of 0.401g/(L·h) in the recombinant SYPO-2, which was approximately 21.3% and 33.2% higher than that of SYPO-1 and SYPO-3, respectively. Conclusion: The N-acetyl-L-ornithine deacetylase from S. marcescens Y213 has been screened and overexpressed in the L-ornithine producing strain C. crenatum SYPO-1, which could promote the rapid consumption of L-ornithine precursors and achieve L-ornithine accumulation. A huge potential of C. crenatum to overproduce not only L-ornithine but also L-citrulline, L-arginine from renewable resources such as glucose were demonstrated.

Key words: L-ornithine    Corynebacterium crenatum    N-acetyl-L-ornithine deacetylase    argE
收稿日期: 2018-01-27 出版日期: 2018-08-13
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31770058);江苏省杰出青年科学基金(BK20150002);教育部重点研究项目(113033A);中央高校基本科研业务费专项资金(JUSRP51708A);江苏高校优势学科建设工程资助项目
通讯作者: 徐美娟,饶志明     E-mail: xumeijuan@jiangnan.edu.cn;raozhm@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒群峰
徐美娟
李静
张显
杨套伟
许正宏
饶志明

引用本文:

舒群峰,徐美娟,李静,张显,杨套伟,许正宏,饶志明. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究 *[J]. 中国生物工程杂志, 2018, 38(7): 29-39.

Qun-feng SHU,Mei-juan XU,Jing LI,Xian ZHANG,Tao-wei YANG,Zheng-hong XU,Zhi-ming RAO. Producing L-ornithine by Heterologous Expression of N-acetyl-L-ornithine Deacetylase in Corynebacterium crenatum. China Biotechnology, 2018, 38(7): 29-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180705        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/29

Strain/plasmid Characteristic Source
Strains
E. coli JOM109 recA1, endA1, gyrA96, thi, hsdR17, supE44, relA1, Δ(lac-proAB), [FtraD36, proAB+, lac Iq, lacZ ΔM15] Invitrogen
E. coli BL21(DE3) F- ompT gal dcm lon hsdSB (rB- mB-)λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) Invitrogen
C.crenatum SYPA5-5 A hyper arginine production strain, His-, SGr, D-Argr, H-Argr Our lab
SYPO-1 C.crenatum SYPA5-5 with proB and argF deletion, the positive mutation E19Y of CcNAGK into the chromosome of SYPA5-5 Our lab
SYPO-2 SYPO-1 with pDXW10-SmargE This study
SYPO-3 SYPO-1 with pDXW10-CcargJ This study
Plasmids
pMD-18T E. coli clone plasmid Ampr, Col E origin TaKaRa
T-CcargJ A derivative of pMD18-T, Ampr, harboring argJ gene from C. crenatum SYPA5-5 This study
T-argE A derivative of pMD18-T, Ampr, harboring argE gene This study
pDXW10 A shutter expression vector, KmR, Ptac promoter [17]
pDXW10-CcargJ A derivative of pDXW10, harboring argJ gene from C. crenatum SYPA5-5 under its native promoter This study
pDXW10-EcargE A derivative of pDXW10, harboring argE gene from E. coli BL21(DE3) under its native promoter This study
pDXW10-KpargE A derivative of pDXW10, harboring argE gene from Klebsiella pneumoniae P01 under its native promoter This study
pDXW10-BsargE A derivative of pDXW10, harboring argE gene from Bacillus subtilis subsp. subtilis strain 168G under its native promoter This study
pDXW10-SmargE A derivative of pDXW10, harboring argE gene from Serratia marcescens Y213 under its native promoter This study
表1  本实验所用的菌株及质粒
Name DNA Sequence (5' - 3') Restriction site
P1 F CCGGAATTCAAAGGAGGGAAATCATGAAAAACAAATTACCGCCATT EcoR I
P1 R CGAGCTCTTAGTGGTGGTGGTGGTGGTGATGCCAGCAAAAATGGG Sac I
P2 F CCGGAATTCAAAGGAGGGAAATCATGACCGCGACCCTTGAGCT EcoR I
P2 R CGAGCTCTTAGTGGTGGTGGTGGTGGTGCTCATTTTTTACTTTCG Sac I
P3 F CCGGAATTCAAAGGAGGGAAATCATGCCGTTGCCGACGCTG EcoR I
P3 R CGAGCTCTTAGTGGTGGTGGTGGTGGTGGTGCAGGCAATAGTGCCG Sac I
P4 F CCGGAATTCAAAGGAGGGAAATCGTGAAGATGAAATTACCTC EcoR I
P4 R CGAGCTCTTAGTGGTGGTGGTGGTGGTGCTGCCGGCAAAAGTGAT Sac I
P5 F CGCGTCGACAAAGGAGGGAAATCATGCACCACCACCACCACCACATGGCAGAAA AAGGCATTAC Sal I
P5 R CGCGAATTCTTAAGAGCTGTACGCGGAGTTG EcoR I
表2  本研究所用到的引物
图1  钝齿棒杆菌 SYPO-1中L-鸟氨酸生物合成途径
图2  基因PCR结果及质粒pDXW10-argE酶切验证
Enzyme Organism Specific
activity(U/mg)
pH optimum Temperature
optimum (℃)
Metals
EcNAOD Escherichia coli BL21(DE3) 416.26 7.0 37 Mg2+, Li+ (0.1mmol/L a litter promote to activity)
SmNAOD* Serratia marcescens Y213 798.98 7.0 37 Mn2+,Li+,Mg2+ (0.1mmol/L activity increases more than 50%)
KpNAOD Klebsiella pneumoniae P01 460.06 7.5 37 Mn2+ (0.1mmol/L activity increases more than 50%)
BsNAOD Bacillus subtilis subsp. subtilis strain168G 62.03 8.0 50 Mn2+ (0.1mmol/L 57% inhibition)
表3  本实验涉及的NAOD重组酶的酶学性质的研究
图3  重组菌株粗蛋白及N-乙酰鸟氨酸脱乙酰化酶纯化后 SDS-PAGE分析
图4  N-乙酰鸟氨酸脱乙酰基酶温度及pH稳定性
图5  重组钝齿棒杆菌N-乙酰鸟氨酸脱乙酸基酶及OATase粗酶液SDS-PAGE分析
Crude enzyme activity Total activity
of NAOD
(U/ml)
Total activity
of OATase
(U/ml)
C. crenatum SYPO-1 0 5.9
SYPO-1/pDXW10-argJ 0 50.8
SYPO-1/pDXW10-argE 128.4 12.5
表4  重组钝齿棒杆菌粗酶液中的N-乙酰鸟氨酸脱乙酰基酶与N-乙酰鸟氨酸乙酰转移酶酶活比较
图6  重组菌株 SYPO-2、SYPO-3与出发菌株SYPO-1的发酵曲线
Amino acid/strains SYPO-1 (g/L) SYPO-1/argJ (g/L) SYPO-1/argE (g/L)
Asp 0.028±0.000 2 0.026±0.000 3 0.023±0.000 2
Glu 0.15±0.001 0.14±0.009 0.16±0.009
Ser 0.004±0.000 2 0.005±0.000 3 0.004±0.000 2
His 0.022±0.000 3 0.023±0.000 1 0.024±0.000 2
Gly 0.058±0.000 5 0.054±0.000 21 0.059±0.000 43
Thr 0.008±0.000 06 0.005±0.000 02 0.004±0.000 03
Arg 0.005±0.000 2 0.004±0.000 1 0.004±0.000 3
Ala 0.706±0.004 3 0.659±0.003 2 0.694±0.004 5
Tyr 0.196±0.001 2 0.210±0.002 6 0.187±0.001 5
Cys 0.008±0.000 2 0.012±0.000 3 0.009±0.000 2
Val 0.985±0.003 0.598±0.002 0.241±0.001
Met 0.035±0.000 1 0.034±0.000 2 0.032±0.000 1
Phe 0.042±0.000 3 0.040±0.000 2 0.032±0.000 2
Ile 3.528±0.032 3.112±0.027 2.432±0.018
Leu 0.769±0.006 5 0.654±0.004 3 0.712±0.005 9
Lys 3.947±0.043 3.017±0.037 2.192±0.015
Pro 0.0007±0.000 03 0.000 4±0.000 02 0.000 2±0.000 01
Trp 0.008±0.000 3 0.006±0.000 5 0.005±0.000 3
表5  重组菌株与出发菌株的5L发酵罐上的发酵液中的18种氨基酸的浓度
Strain L-ornithine
titer(g/L)
Cultivation
method
Medium Key
engineering
Reference
C. crenatum SYPO-3 38.5 Bioreactor;
batch
Semi-defined ?Deletion of argF, argR, and proB
?Heterologous expression of N-acetyl-L-ornithine deacetylase
This study
C. glutamicum YW06
(pSY223)
51.5 Bioreactor;
fed-batch
Semi-defined ?Deletion of argF, argR, and proB
?Reinforcement of the pp pathway flux
?The use of a feedback-resistant enzyme
[8]
E. coli SJ7055 0.009 Shake flask;
batch
Semi-defined ?Deletion of argF, argR, argI, speF and proB
?The use of feedback-resistant argG
[3]
C. glutamicum SJ8074
(pEK-CJBD)
0.179 Shake flask;
batch
Semi-defined ?Deletion of argF, argR, and proB [7]
C. glutamicum
△APE6937R42
24.1 Shake flask;
batch
Semi-defined ?Deletion of argF, argR, and proB
?Adaptive evolution in presence of L-ornithine
[5]
Corynebacterium glutamicum S9114 18.4 Shake flask;
batch
Semi-defined ?Inactivation of argF, ncgl1221, argR, and putP, attenuation of odhA
?Overexpression of LysE
[9]
表6  比较不同菌株产L-鸟氨酸的情况
[1] Han P S, Fishel R S, Efron D T , et al. Effect of supplemental ornithine on wound healing. Journal of Surgical Research, 2002,106(2):299.
doi: 10.1006/jsre.2002.6471 pmid: 12175982
[2] 卢冬梅 . 微生物合成鸟氨酸的代谢工程研究进展. 微生物学通报, 2015,42(7):1391-1399.
doi: 10.13344/j.microbiol.china.140716
Lu D M . Progress in metabolic engineering for microbial synthesis of ornithine. Microbiology China, 2015,42(7):1391-1399.
doi: 10.13344/j.microbiol.china.140716
[3] Lee Y J, Cho J Y . Genetic manipulation of a primary metabolic pathway for L-ornithine production in Escherichia coli. Biotechnol Lett, 2006,28(22):1849-1856.
doi: 10.1007/s10529-006-9163-y
[4] Sakanyan V, Petrosyan P, Lecocq M , et al. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology, 1996,142(Pt 1):99-108.
doi: 10.1099/13500872-142-1-99
[5] Jiang L Y, Chen S G, Zhang Y Y , et al. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnology, 2013,13(1):47.
doi: 10.1186/1472-6750-13-47 pmid: 3681597
[6] Dou W, Xu M, Cai D , et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Appl Biochem Biotechnol, 2011,165(3-4):845-855.
doi: 10.1007/s12010-011-9302-3
[7] Hwang J H, Hwang G H, Cho J Y . Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum. Journal of Microbiology & Biotechnology, 2008,18(4):704.
[8] Kim S Y, Lee J, Lee S Y . Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng, 2015,112(2):416-421.
doi: 10.1002/bit.v112.2
[9] Zhang B, Yu M, Zhou Y , et al. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microb Cell Fact, 2017,16(1):158.
doi: 10.1186/s12934-017-0776-8
[10] Xu M, Rao Z, Dou W , et al. The role of ARGR repressor regulation on L-arginine production in Corynebacterium crenatum. Appl Biochem Biotechnol, 2013,170(3):587-597.
doi: 10.1007/s12010-013-0212-4 pmid: 23564434
[11] Man Z, Xu M, Rao Z , et al. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Scientific Reports, 2016,6:28629.
doi: 10.1038/srep28629 pmid: 27338253
[12] 赵芹芹, 罗玉常, 窦文芳 , 等. 钝齿棒杆菌的代谢改造:L-鸟氨酸与L-瓜氨酸合成菌株的构建. 微生物学通报, 2014,41(10):1941-1947.
doi: 10.13344/j.microbiol.china.140065
Zhao Q Q, Luo Y C, Dou W F , et al., Engineering Corynebacterium crenatum for construction of L-ornithine and L-citrulline producers. Microbiology China, 2014,41(10):1941-1947.
doi: 10.13344/j.microbiol.china.140065
[13] Xu M, Rao Z, Yang J , et al. Heterologous and homologous expression of the arginine biosynthetic argC-H cluster from Corynebacterium crenatum for improvement of (L) -arginine production. J Ind Microbiol Biotechnol, 2012,39(3):495-502.
doi: 10.1007/s10295-011-1042-4
[14] Zhao Q, Luo Y, Dou W , et al. Controlling the transcription levels of argGH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and argR-deregulated Corynebacterium crenatum. Journal of Industrial Microbiology & Biotechnology, 2016,43(1):55-66.
[15] 李子武, 张显, 徐美娟 , 等. 一株产灵菌红素黏质沙雷氏菌的筛选、鉴定及发酵条件. 食品与生物技术学报, 2012,31(10):1018-1024.
doi: 10.3969/j.issn.1673-1689.2012.10.002
Li Z W, Zhang X, Xu M J , et al. Screening and identification a Serratia marcescen Strain producing red-pigment and preliminary study of the fermentation conditions. Journal of Food Science and Biotechbology, 2012,31(10):1018-1024.
doi: 10.3969/j.issn.1673-1689.2012.10.002
[16] 徐美娟, 杨套伟, 饶志明 , 等. 克雷伯氏菌甘油脱氢酶dhaD的克隆表达、纯化及酶学性质研究. 中国生物工程杂志, 2008,28(12):30-35.
doi: 10.3321/j.issn:1002-6630.2008.06.045
Xu M, Rao Z, Yang W , et al. Expression, purification and enzymatic characterization of Klebsiella sp. glycerol dehydrogenase in E. coli. Chinese Journal of Biotechnology, 2008,28(12):30-35.
doi: 10.3321/j.issn:1002-6630.2008.06.045
[17] Xu D, Tan Y, Shi F , et al. An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid, 2010,64(2):85.
doi: 10.1016/j.plasmid.2010.05.004
[18] 徐美娟, 张显, 饶志明 , 等. 钝齿棒杆菌N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011,27(7):1013-1023.
Xu M J, Zhang X, Rao Z M , et al, Expression, cloning, expression and characterization of N-acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011,27(7):1013-1023.
[19] Schã Gger H .Tricine-SDS-PAGE. Nature Protocols, 2006,1(1):16-22.
doi: 10.1038/nprot.2006.4
[20] Sambrook J, Fritsch E F, Maniatis T . Molecular cloning. a laboratory manual. Analytical Biochemistry, 2001,186(1):182-183.
[21] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(s 1-2):248-254.
doi: 10.1016/0003-2697(76)90527-3
[22] Javidmajd F, Blanchard J S . Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry, 2000,39(6):1285.
doi: 10.1021/bi992177f
[23] Marc F, Weigel P, Legrain C , et al. An invariant threonine is involved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase. J Biol Chem, 2001,276(27):25404-25410.
doi: 10.1074/jbc.M100392200
[24] Tauch A, Kirchner O, Löffler B , et al. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Current Microbiology, 2002,45(5):362-367.
doi: 10.1007/s00284-002-3728-3
[25] Xu M, Rao Z, Dou W , et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012,43(1):255-266.
doi: 10.1007/s00726-011-1069-x
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.