Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 40-49    DOI: 10.13523/j.cb.20180706
技术与方法     
一种用于肿瘤药物治疗的新型人源性穿膜肽的优化及其应用 *
李思1,翟逸舟1,陆玉婷2,王富军2,3,赵健1,**()
1 华东理工大学生物反应器工程重点实验室 上海 200237
2 浙江日升昌药业有限公司 东阳 322100
3 上海中医药大学中药研究所 上海 201203
The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment
Si LI1,Yi-zhou ZHAI1,Yu-ting LU2,Fu-jun WANG2,3,Jian ZHAO1,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, Chain
2 Zhejiang Reachall Pharmaceutical Co. Ltd, Dongyang 322100,Chain
3 Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203,Chain
 全文: PDF(2086 KB)   HTML
摘要:

细胞穿膜肽(cell-penetrating peptide,CPP)作为一种体内大分子药物跨膜运输载体被广泛研究和应用。中期因子Midkine(MK)是人体的一种带有肝素结合域(heparin-binding domain,HBD)的生长因子。报道了MK中HBD的部分富含碱性氨基酸的基因序列(命名为MK-S0)与绿色荧光蛋白(EGFP)基因融合表达后,能将EGFP有效地转运入胞内,且其穿膜转运效率高于经典穿膜肽Tat。将MK-S0序列进一步突变优化改造得到的midkine-mutant Δ4(MK-Δ4),其穿膜效率比天然序列来源的MK-S0提高16倍以上,且MK-Δ4的穿膜转运作用适用于多种肿瘤细胞。穿膜机制分析研究结果显示,MK-Δ4可与细胞表面硫酸乙酰肝素结合,随之以巨胞饮形式内吞入胞。采用MTT方法检测的细胞生长抑制试验结果显示,连接有MK-Δ4的苦瓜来源的核糖体失活蛋白MAP30比单独的MAP30对HeLa肿瘤细胞的药效可提升5.8倍,大大提高了这种药物蛋白抑杀肿瘤细胞的效果。由此表明,源于MK的这种经过突变改造的MK-Δ4,可作为一种新型高效的细胞穿膜肽,将药物蛋白有效运输到细胞内发挥抗肿瘤效应。

关键词: 中期因子肝素结合域细胞穿膜肽药物运输抗肿瘤药物    
Abstract:

Cell-penetrating peptides (CPPs) have been widely used in decades for its ability to carry many macromolecular drugs across cell-membrane to exert their effects. Midkine (MK) is a heparin-binding growth factor with a heparin-binding domain (HBD). The HBD in MK that is rich in basic amino acids (MK-S0) was fused with enhanced green fluorescence protein (EGFP) and then it was found that MK-S0 could deliver EGFP into cells, and its transportation capacity is much higher that classical CPPs (such as Tat). After the sequence optimization on MK-S0, MK-Δ4 whose trans-membrane ability was increased about 16-fold than MK-S0 was obtained. The trans-membrane ability of MK-Δ4 was also suitable for a variety of tumor cells. The further investigation of endocytic pathways on MK-Δ4 was shown that MK-Δ4 penetrates cell-membrane through interacting with heparin sulfate on the cell surface and then via macropinocytosis. The results of cell growth inhibition by MTT method showed that MK-Δ4 could enhance the inhibitory effect of a ribosome-inactivating protein-MAP30 about 5.8-fold in HeLa cells which is significantly enhance the anti-tumor activity of MAP30. It was suggested that MK-Δ4 optimized from heparin-binding domain MK is a novel human-derived CPP with high efficiency, and is a new drug vector for anti-tumor therapy.

Key words: Midkine    Heparin-binding domain    Cell-penetrating peptide    Drug delivery    Anti-tumor drug
收稿日期: 2018-03-20 出版日期: 2018-08-13
ZTFLH:  Q71  
基金资助: 国家自然科学基金(81571795)
通讯作者: 赵健     E-mail: zhaojian@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李思
翟逸舟
陆玉婷
王富军
赵健

引用本文:

李思,翟逸舟,陆玉婷,王富军,赵健. 一种用于肿瘤药物治疗的新型人源性穿膜肽的优化及其应用 *[J]. 中国生物工程杂志, 2018, 38(7): 40-49.

Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment. China Biotechnology, 2018, 38(7): 40-49.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180706        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/40

图1  纯化的重组蛋白EGFP-MK-S0进行SDS-PAGE分析
图2  EGFP-MK-S0及多种CPPs的荧光检测及流式细胞术检测
图3  EGFP-MK-S0突变体的穿膜效率分析
Name Sequence Fusion protein
MK-S0 TKPCTPKTKAKAKAKKGKGKD EGFP-MK-S0
MK-Δ1 GKPCGPKGKVKSKIKKGKGKS EGFP-MK-Δ1
MK-Δ2 TKPCTPCKTKAKAKAKAKAKAKKGKGKD EGFP-MK-Δ2
MK-Δ3 TKPCTPRTRARARARRGRGRD EGFP-MK-Δ3
MK-Δ4 TKPCTPRTRARARARARARARRGRGRD EGFP-MK-Δ4
表1  MK-S0的突变体序列
图4  纯化的重组蛋白EGFP-MK-Δ4的SDS-PAGE分析
图5  EGFP-MK-Δ4的穿膜细胞谱
图6  各种内吞途经抑制剂对EGFP-MK-Δ4穿膜效率的影响
图7  EGFP、EGFP-MK-Δ4对HeLa的促生长效应
图8  纯化的重组蛋白MAP30-MK-Δ4的 SDS-PAGE分析
图9  重组蛋白MAP30-MK-Δ4对不同肿瘤细胞存活率的影响
Tumor cells IC50 (μmol/L)
MAP30 MAP30-MK-Δ4 Increased fold
HeLa 2.576 0.444 5.8
SMMC 3.028 0.572 5.3
MGC803 2.367 0.580 4.1
表2  MAP30融合蛋白对不同肿瘤细胞的半抑制浓度 (IC50)
[1] Chin L, Andersen J N, Futreal P A . Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011,17(3):297-303.
doi: 10.1038/nm.2323 pmid: 21383744
[2] Koren E, Torchilin V P . Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine, 2012,18(7):385-393.
doi: 10.1016/j.molmed.2012.04.012 pmid: 22682515
[3] Vivès E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 1997,272(25):16010-16017.
doi: 10.1074/jbc.272.25.16010
[4] Morris M C, Gros E, Aldrianherrada G , et al. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Research, 2007,35(7):e49.
doi: 10.1093/nar/gkm053 pmid: 1874649
[5] Choi Y J, Lee J Y, Park J H , et al. The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials, 2010,31(28):7226-7238.
doi: 10.1016/j.biomaterials.2010.05.022
[6] Eguchi A, Dowdy S F . siRNA delivery using peptide transduction domains. Trends in Pharmacological Sciences, 2009,30(7):341-345.
doi: 10.1016/j.tips.2009.04.009 pmid: 19545914
[7] Meneghetti M C, Hughes A J, Rudd T R , et al. Heparan sulfate and heparin interactions with proteins. Journal of the Royal Society Interface, 2015,12(110):589.
doi: 10.1098/rsif.2015.0589 pmid: 26289657
[8] Dr I C, Prof R J L . Heparin-protein interactions. Angewandte Chemie International Edition, 2002,41(3):391-412.
[9] Raman R, Raguram S, Venkataraman G J , et al. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nature Methods, 2005,2(11):817-824.
doi: 10.1038/nmeth807 pmid: 16278650
[10] Mu?oz E M, Linhardt R J . Heparin-binding domains in vascular biology. Arteriosclerosis Thrombosis & Vascular Biology, 2004,24(9):1549-1557.
doi: 10.1161/01.ATV.0000137189.22999.3f pmid: 4114236
[11] Gallagher J T . Heparan sulfate: growth control with a restricted sequence menu. Journal of Clinical Investigation, 2001,108(3):357-361.
doi: 10.1172/JCI13713 pmid: 11489926
[12] Forsten-Williams K, Chu C L, Fannon M , et al. Control of growth factor networks by heparan sulfate Pproteoglycans. Annals of Biomedical Engineering, 2008,36(12):2134-2148.
doi: 10.1007/s10439-008-9575-z pmid: 18839312
[13] Zhao J, Gao P, Xiao W , et al. A novel human derived cell-penetrating peptide in drug delivery. Molecular Biology Reports, 2011,38(4):2649-2656.
doi: 10.1007/s11033-010-0406-6 pmid: 21080077
[14] Xi G, Solum M A, Wai C , et al. The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology, 2013,154(11):4146-4157.
doi: 10.1210/en.2013-1236
[15] Lee J Y, Seo Y N, Park H J , et al. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo. Biochemical & Biophysical Research Communications, 2012,419(4):597-604.
[16] Matsuzawa M, Muramatsu T, Yamamori T , et al. Novel neuronal effects of midkine on embryonic cerebellar neurons examined using a defined culture system. Cellular & Molecular Neurobiology, 1999,19(2):209-221.
[17] Muramatsu T . Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proceedings of the Japan Academy, 2010,86(4):410-425.
doi: 10.2183/pjab.86.410 pmid: 3417803
[18] Kadomatsu K, Tomomura M, Muramatsu T . cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun, 1988,151(3):1312-1318.
doi: 10.1016/S0006-291X(88)80505-9
[19] Kilpelainen I, Kaksonen M, Kinnunen T , et al. Heparin-binding growth-associated molecule contains two heparin-binding beta -sheet domains that are homologous to the thrombospondin type I repeat. Journal of Biological Chemistry, 2000,275(18):13564-13570.
doi: 10.1074/jbc.275.18.13564
[20] Zhang R, Yang X Z, Wang J W , et al. Evaluating the translocation properties of a new nuclear targeted penetrating peptide using two fluorescent markers. Journal of Drug Targeting, 2015,23(5):444-452.
doi: 10.3109/1061186X.2014.1003068
[21] Hansen M, Kilk K, Langel ü . Predicting cell-penetrating peptides. ScienceDirect, 2008,60(4-5):549-550.
[22] Goun E A, Pillow T H, Jones L R , et al. Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging. Chembiochem, 2006,37(52):1497-1515.
[23] Richard J P, Melikov K, Brooks H , et al. Cellular uptake of unconjugated Tat peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. Journal of Biological Chemistry, 2005,280(15):15300-15306.
doi: 10.1074/jbc.M401604200
[24] Zhang L X, Zhang S X . Mechanism of cell-penetrating peptides-mediated internalization and its application. Chinese Journal of Biochemistry & Molecular Biology, 2008,24(12):1092-1096.
doi: 10.1016/S1004-9541(08)60026-9
[25] Skotland T, Iversen T G, Torgersen M L , et al. Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules, 2015,20(7):13313-13323.
doi: 10.3390/molecules200713313
[26] Lu Y Z, Li P F, Li Y Z , et al. Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity. Fitoterapia, 2016,112:183-190.
doi: 10.1016/j.fitote.2016.03.019
[27] Lin B, Yang X Z, Cao X W , et al. A novel trichosanthin fusion protein with increased cytotoxicity to tumor cells. Biotechnology Letters, 2017,39(1):71-78.
doi: 10.1007/s10529-016-2222-0 pmid: 27714558
[28] Guidotti G, Brambilla L, Rossi D . Cell-penetrating peptides: from basic research to clinics. Trends in Pharmacological Sciences, 2017,38(4):406-424.
doi: 10.1016/j.tips.2017.01.003 pmid: 28209404
[29] Jobin M L, Alves I D . On the importance of electrosTatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity. Biochimie, 2014,107:154-159.
doi: 10.1016/j.biochi.2014.07.022
[1] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[2] 夏艳梅,于思远,杨晗,李廷栋. 细胞穿膜肽介导生物大分子入胞机制研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 82-89.
[3] 李敏, 吴日伟. 抗肿瘤药物市场概述[J]. 中国生物工程杂志, 2017, 37(4): 125-133.
[4] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[5] 孙娇梦, 许传营, 张忠辉, 王婧, 俞雁, 韩伟. 重组人中期因子midkine对大鼠膝关节软骨部分损伤的修复作用[J]. 中国生物工程杂志, 2010, 30(11): 1-5.
[6] 邢雅玲, 任乐宁, 陈晓娟, 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 60-65.
[7] 邢雅玲 任乐宁 陈晓娟 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.