Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 9-17    DOI: 10.13523/j.cb.20181102
    
The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte
Qiong YANG1,Ling-hui WANG2,Hao GU2,Jing-jing DU2,Jin-yuan LIU3,Shun-hua ZHANG2,Li ZHU2,***()
1. Chengdu Agricultural College, Chengdu 611130, China
2. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
3. Sichuan Animal Science Academy, Chengdu 610066,China
Download: HTML   PDF(1636KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To investigate the effect of miR-196a-5p on proliferation and differentiation of mouse adipocyte, and explore its potential molecular mechanisms.Methods:① Utilizing RT-PCR, miR-196a-5p expression levels in adipose tissues from obese or normal mice were measured; ② The miR-196a-5p expression level during preadipocyte differentiation were measured by RT-PCR method, after 3T3-L1 cells were induced to differentiate by cocktail method; ③After miR-196a-5p mimics or inhibitors were transfected into 3T3-L1 cells, CCK8 and EdU detection were performed to evaluate the effect of miR-196a-5p on its proliferation; ④ Measuring the effect of miR-196a-5p on 3T3-L1 cells differentiation by Oil red O staining and triglyceride assay; ⑤ Detecting the effect of miR-196a-5p on the expression levels of 3T3-L1 cells proliferation and differentiation related genes; ⑥ Based on previous reports, using bioinformatics and luciferase reporter assays to identify targets that miR-196a-5p regulates preadipocyte differentiation.Result:①miR-196a-5p not only were highly expressed in adipose tissues of obese mice, but also were expressed dynamically during 3T3-L1 cells differentiation; ②When compared with negative control, mimics transfection inhibited 3T3-L1 cells proliferation, inhibitors transfection promoted its proliferation;③When compared with negative control, mimics or inhibitors transfection increased or decreased lipid accumulation and triglyceride content, respectively; ④When compared with negative control, mimics transfection repressed proliferation related markers (Cyclin D1,Cyclin E,CDK2 and CDK4) and promoted differentiation related markers (PPARγ,C/EBPα,LPL and aP2), however, inhibitors transfection had an opposite effect than that of mimics transfection; ⑤ The miR-196a-5p mimics significantly suppressed a luciferase reporter gene whose expression was regulated by the mouse MAP4K3 and MAPK1 mRNA 3'UTR, whereas mutation of the miR-196a-5p binding site in murine MAP4K3 and MAPK1 3'UTR completely abolished this response.Conclusions:miR-196a-5p might inhibit 3T3-L1 preadipocyte proliferation, and enhance its differentiation. The regulation of preadipocyte differentiation may be mediated by targeting MAP4K3 and MAPK1.



Key wordsmiR-196a-5p      Proliferation      Differentiation      MAP4K3      MAPK1     
Received: 01 June 2018      Published: 06 December 2018
ZTFLH:  Q591.5  
Corresponding Authors: Li ZHU     E-mail: zhuli7508@163.com
Cite this article:

Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte. China Biotechnology, 2018, 38(11): 9-17.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181102     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/9

Gene Primer sequence (5'→3') TM(℃)
PPARγ F:CTCCAAGAATACCAAAGTGCGA 58.3
R:GCCTGATGCTTTATCCCCACA
Cyclin D1 F: GTTGCTGGAATTTTCGGGGT 60.0
R: AGCGTCCCTGTCTTCTTTCA
C/EBPα F:CAAGAACAGCAACGAGTACCG 58.3
R:GTCACTGGTCAACTCCAGCAC
ELOVL6 F:AAGCACGCTCTATCTCCTGTT 60.0
R:CTGCGTTGTATGATCCCATGAA
Cyclin E F: AGCCTCGGAAAATCAGACCA 58.3
R: TCCTGTGCCAAGTAGAACGT
FAS F:TATCAAGGAGGCCCATTTTGC 60.0
R:TGTTTCCACTTCTAAACCATGCT
aP2 F: CGATCCCAATGAGCAAGTGG 63.5
R: TGGGTCAAGCAACTCTGGAT
SREBP-1c F: GCAGCCACCATCTAGCCTG 57.5
R: CAGCAGTGAGTCTGCCTTGAT
SCD F: TTCTTGCGATACACTCTGGTGC 54.3
R: CGGGATTGAATGTTCTTGTCGT
LPL F:TGGCGTAGCAGGAAGTCTGA 60.0
R:TGCCTCCATTGGGATAAATGTC
CDK2 F: CCCTTCCCAAAGCCCTTTTC 63.5
R: GAAGAGGGGAAGAAGCTGGT
MAP4K3 F: AGAAATCCTTACACGGGCCA 58.2
R: CCAGCATCTCAAACATCCGG
CDK4 F: GTCAGTTTCTAAGCGGCCTG 61.0
R: CACGGGTGTTGCGTATGTAG
MAPK1 F: GAGGGGTTGGTGTGAGATCA 57.0
R: CCCATCCACCAGACAGCTTA
miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG 61.0
U6 F:CTCGCTTCGGCAGCACA 61.0
R:AACGCTTCACGAATTTGCGT
β-actin F:TGGAATCCTGTGGCATC CATGAAAC 60.0
R:TAAAACGCAGCTCAG TAACAGTCCG
Table 1 The primer sequences used for qRT-PCR
Fig.1 miR-196a-5p highly expressed in adipose tissues of obese mice RT-PCR measured the expression of miR-196a-5p in adipose tissues including gonadal fat (g-Fat), inguinal fat (i-Fat) and perirenal fat (p-Fat) from HFD- and NCW-fed mice. * P<0.05; ** P<0.01
Fig.2 The expression of miR-196a-5p during 3T3-L1 preadipocyte differentiation RT-PCR measured the expression levels of miR-196a-5p at day 0, 2, 4, 6, 8 of preadipocyte differentiation. * P<0.05; ** P<0.01
Fig.3 miR-196a-5p inhibited 3T3-L1 preadipoyte proliferation3T3-L1 cells were transfected with miR-196a-5p mimics, inhibitors, or negative control (NC) (a) Expression levels of miR-196a-5p measured by RT-PCR. Effects of the miR-196a-5p mimics, inhibitors and control on 3T3-L1 cells proliferation were determined by (b) CCK-8 and (c,d) Edu assays. RT-PCR measured the expression levels of Cyclin D1, Cyclin E, CDK2 and CDK4. * P< 0.05; ** P<0.01
Fig.4 miR-196a-5p promoted 3T3-L1 preadipocyte differentiation (a) qRT-PCR measured the expression levels of miR-196a-5p after transfection with the mimics, inhibitors or negative control (NC) (b) Transfected and differentiated cells stained with oil red O (c) Triglyceride content measured by spectrophotometric analysis (d) RT-PCR determined the expression levels of markers related adipocyte differentiation. * P<0.05; ** P<0.01
Fig.5 MAP4K3 and MAPK1 were target genes of miR-196a-5p Sequence alignment of miR-204-5p with the 3' UTR of mouse (mmu) MAP4K3 (a) and MAPK1 (b) mRNA. The binding site and seed region of miR-196a-5p are indicated in red. Expression levels of MAP4K3 (c) and MAPK1 (d) in transfected and differentiated cells were measured by RT-PCR. (e),(f) A recombinant double fluorescent reporter plasmid containing the luciferase gene under the control of either the wild-type (WT) 3' UTR of MAP4K3 and MAPK1, or a mutant sequence (MUT) were used to investigate the interaction of miR-196a-5p with the 3' UTR of MAP4K3 and MAPK1 mRNA. This assay revealed the repressive effect of miR-196a-5p on MAP4K3 and MAPK1 activity. * P<0.05; ** P<0.01
[1]   Sun B, Karin M . Obesity, inflammation and liver cancer. Journal of Hepatology, 2012,56(3):704-713.
doi: 10.1016/j.jhep.2011.09.020 pmid: 22120206
[2]   Kahn S E, Hull R L, Utzschneider K M , et al. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2007,444(7121):840-846.
[3]   Mayer J, Thomas D W . Regulation of food intake and obesity. Science, 1967,156(3773):328-337.
doi: 10.1126/science.156.3773.328 pmid: 4886532
[4]   Li J . MicroRNAs: target recognition and regulatory functions. Cell, 2009,136(2) : 215-233.
doi: 10.1016/j.cell.2009.01.002
[5]   Ambros V . The function of animal MicroRNAs. Nature, 2004,431(7006):350-355.
doi: 10.1038/nature02871
[6]   Du T, Zamore P D . Microprimer: the biogenesis and function of microRNA. Development, 2005,132(21):4645-4652.
doi: 10.1242/dev.02070 pmid: 16224044
[7]   Perri R, Nares S, Zhang S , et al. MicroRNA modulation in obesity and periodontitis. Journal of Dental Research, 2012,91(1):33-38.
doi: 10.1177/0022034511425045 pmid: 22043006
[8]   Kajimoto K, Naraba H, Iwai N . MicroRNA and 3T3-L1 pre-adipocyte differentiation. Rna-a Publication of the Rna Society, 2006,12(9):1626-1632.
doi: 10.1261/rna.7228806 pmid: 16870994
[9]   Berthold S, Kovacs P, Fasshauer M , et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 2009,4(3):e4699.
doi: 10.1371/journal.pone.0004699 pmid: 2649537
[10]   Karbiener M, Fischer C, Nowitsch S , et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochemical and Biophysical Research Communications , 2009,390(2):247-251.
doi: 10.1016/j.bbrc.2009.09.098 pmid: 19800867
[11]   Peng Y, Xiang H, Chen C , et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. International Journal of Biochemistry & Cell Biology, 2013,45(8):1585-1593.
doi: 10.1016/j.biocel.2013.04.029 pmid: 23665235
[12]   Lv S, Ma M, Sun Y , et al. MicroRNA-129-5p inhibits 3T3-L1 preadipocyte proliferation by targeting G3BP. Animal Cells & Systems the Official Publication of the Zoological Society of Korea, 2017,21(4):269-277.
doi: 10.1080/19768354.2017.1337046
[13]   Pan J, Li X, Wu W , et al. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Letters, 2016,382(1):64-76.
doi: 10.1016/j.canlet.2016.08.015 pmid: 27591936
[14]   Zhao X, Liu Y, Zheng J , et al. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochimica Et Biophysica Acta. 2017,1864(10):1605-1617.
doi: 10.1016/j.bbamcr.2017.06.020 pmid: 28666797
[15]   赵华路, 姚南, 魏雪菊 , 等. miR-196a-5p抑制小鼠胚胎干细胞的自我更新. 基础医学临床, 2014,34(12):1645-1649.
[15]   Zhao H L, Yao N, Wei X J , et al. miR-196a-5p suppresses self-renewal of mouse embryonic stem cells. Basic & Clinical Medicine, 2014,34(12):1645-1649.
[16]   Huang N, Wang J, Xie W , et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochemical & Biophysical Research Communications, 2015,457(1):37-42.
doi: 10.1016/j.bbrc.2014.12.055 pmid: 25529446
[17]   黃筠雅 . Map4k3基因对脂肪細胞分化的影响. 花莲:慈济大学生命科学研究所, 2012.
[17]   Huang J Y . The effect of Map4k3 on adipocytes differentiation. Hualian:Dissertation of Institute of Life Science, Tzu Chi University, 2012.
[18]   Chen J F, Mandel E M, Thomson J M , et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006,38(2):228-233.
doi: 10.1038/ng1725 pmid: 16380711
[19]   Taylor D D, Gercel-Taylor C . MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 2008,110(1):13-21.
doi: 10.1016/j.ygyno.2008.04.033 pmid: 18589210
[20]   Delaloy C, Liu L, Lee J A , et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell, 2010,6(4):323-335.
doi: 10.1016/j.stem.2010.02.015 pmid: 20362537
[21]   Gaudet A D, Fonken L K, Gushchina L V , et al. miR-155 deletion in female mice prevents diet-induced obesity. Scientific Reports, 2016,6(22862):1-10.
doi: 10.1038/s41598-016-0001-8
[22]   Du J, Cheng X, Shen L , et al. Methylation of miR-145a-5p promoter mediates adipocytes differentiation. Biochemical and Biophysical Research Communications, 2016,475(1):140-148.
doi: 10.1016/j.bbrc.2016.05.057 pmid: 27179777
[23]   Tan Z, Du J, Shen L , et al. miR-199a-3p affects adipocytes differentiation and fatty acid composition through targeting SCD. Biochemical and Biophysical Research Communications, 2017,492(1):82-88.
doi: 10.1016/j.bbrc.2017.08.030 pmid: 28803985
[24]   Du J, Xu Y, Zhang P . et al. MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fattyacid composition of porcine intramuscular fat. International Journal of Molecular Sciences, 2018,19(2):1-3.
doi: 10.3390/ijms19020501 pmid: 29414921
[25]   Baldin V, Lukas J, Marcote M J , et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & Development. 1993,7(5):812-821.
[26]   Stacey D W . Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current Opinion in Cell Biology. 2003,15(2):158-163.
doi: 10.1016/S0955-0674(03)00008-5 pmid: 12648671
[27]   Koff A, Dulic V, Lees E , et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle : Science 257, 1689-1694. Trends in Cell Biology, 1992,2(12):362-362.
doi: 10.1126/science.1388288 pmid: 1388288
[28]   Meyer C A, Jacobs H W, Lehner C F . Cyclin D-cdk4 is not a master regulator of cell multiplication in Drosophila embryos. Current Biology, 2002,12(8):661-666.
doi: 10.1016/S0960-9822(02)00770-4 pmid: 11967154
[29]   Siersb?k R, Nielsen R, Mandrup S . PPARγ in adipocyte differentiation and metabolism - novel insights from genome-wide studies. Febs Letters, 2010,584(15):3242-3249.
doi: 10.1016/j.febslet.2010.06.010
[30]   Choi S K, Park S, Jang S , et al. Cascade regulation of PPARγ(2) and C/EBPα signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes. Metabolism Clinical & Experimental, 2016,65(5):646-654.
[31]   Zhou J, Guo F, Wang G , et al. miR-20a regulates adipocyte differentiation by targeting lysine-specific demethylase 6b and transforming growth factor-β signaling. International Journal of Obesity , 2015,39(8):1282-1291.
doi: 10.1038/ijo.2015.43 pmid: 25817070
[32]   Rosen E D, Hsu C H, Wang X , et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes & Development, 2002,16(1):22-26.
[33]   Bushati N , Cohen S M. microRNA functions. Annual Review of Cell & Developmental Biology, 2007,23(23):175-205.
[34]   Bost F, Aouadi M, Caron L , et al. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005,87(1):51-56.
doi: 10.1016/j.biochi.2004.10.018 pmid: 15733737
[35]   Machinalquélin F, Dieudonné M N, Leneveu M C , et al. Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. American Journal Physiol Cell Physiol, 2002,282(4):c853-c863.
doi: 10.1152/ajpcell.00331.2001 pmid: 11880274
[1] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[2] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[3] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[4] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[5] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[6] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[7] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[8] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[9] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[10] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[11] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[12] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[13] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[14] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[15] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.