Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 62-72    DOI: 10.13523/j.cb.2105015
    
Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells
ZHAO Jiu-mei,WANG Zhe(),LI Xue-ying()
Medical Genetics Department of Zunyi Medical University, Zunyi 563099, China
Download: HTML   PDF(900KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bone marrow mesenchymal stem cells are a type of adult stem cells with self-replication and multi-differentiation potential. It can differentiate into osteoblasts, chondrocytes, adipocytes, etc. through specific induction, so it has become the ideal seed cell for the most studies on bone regenerative medicine and cell therapy. Current studies have confirmed that in the process of bone marrow mesenchymal stem cells repairing bone defects, the expression increases of chondrogenesis-related genes in bone marrow mesenchymal stem cells, and then differentiate into chondrocytes. Later, with the formation of osteoblasts and osteoclasts and the growth of blood vessels, the cartilage matrix is gradually degraded and replaced by bone matrix. It shows that chondrocytes are involved in the pre-repair process of bone defects, and the signal pathways and related factors that regulate cartilage formation not only regulate the differentiation of bone marrow mesenchymal stem cells into chondrocytes, at the same time, they also play an important role in the process of osteoblast differentiation. Therefore, this article summarizes the regulatory effects and current research status of the signal pathways and related factors that regulate cartilage formation in the bone differentiation of bone marrow mesenchymal stem cells, in order to provide a theoretical basis and research direction for the clinical search for better treatment of bone defects.



Key wordsSignal pathways      Bone marrow mesenchymal stem cells (BMSCs)      Transcription factors      Growth factors      Cells differentiation     
Received: 08 May 2021      Published: 08 November 2021
ZTFLH:  Q28R318  
Corresponding Authors: Zhe WANG,Xue-ying LI     E-mail: fuzzywong@foxmail.com;leexueying4722@163.com
Cite this article:

ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells. China Biotechnology, 2021, 41(10): 62-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105015     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/62

Fig.1 The regulation process of endochondral ossification of BMSCs →: Enhancement; —|: Inhibition; —: interaction
[1]   Heo J S, Choi Y, Kim H S, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. International Journal of Molecular Medicine, 2016, 37(1): 115-125.
doi: 10.3892/ijmm.2015.2413
[2]   He A J, Liu L N, Luo X S, et al. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Scientific Reports, 2017, 7: 40489.
doi: 10.1038/srep40489
[3]   胡坤, 陈竹, 罗栩伟, 等. 组织工程软骨的研究新进展. 西部医学, 2020, 32(6): 927-932.
[3]   Hu K, Chen Z, Luo X W, et al. New progresses of tissue engineered cartilage. Medical Journal of West China, 2020, 32(6): 927-932.
[4]   毛克亚, 刘建恒, 崔翔. 骨组织工程材料在大段骨缺损修复中的应用进展. 武警医学, 2020, 31(4): 277-280, 283.
[4]   Mao K Y, Liu J H, Cui X. Application of bone tissue engineering materials in the repair of large bone defects. Medical Journal of the Chinese People’s Armed Police Force, 2020, 31(4): 277-280, 283.
[5]   Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connective Tissue Research, 2017, 58(1): 2-14.
doi: 10.1080/03008207.2016.1183667
[6]   Furumatsu T, Shukunami C, Amemiya-Kudo M, et al. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. The International Journal of Biochemistry & Cell Biology, 2010, 42(1): 148-156.
doi: 10.1016/j.biocel.2009.10.003
[7]   Zhou G, Zheng Q, Engin F, et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. PNAS, 2006, 103(50): 19004-19009.
doi: 10.1073/pnas.0605170103
[8]   Lee S, Yoon D S, Paik S, et al. MicroRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem Cells and Development, 2014, 23(15): 1798-1808.
doi: 10.1089/scd.2013.0609
[9]   Lin X, Wu L, Zhang Z M, et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. Journal of Bone and Mineral Research, 2014, 29(7): 1575-1585.
doi: 10.1002/jbmr.2163
[10]   Otero M, Peng H B, Hachem K E, et al. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connective Tissue Research, 2017, 58(1): 15-26.
doi: 10.1080/03008207.2016.1200566
[11]   Caron M M J, Emans P J, Surtel D A M, et al. BAPX-1/NKX-3.2 acts as a chondrocyte hypertrophy molecular switch in osteoarthritis. Arthritis & Rheumatology (Hoboken, N J), 2015, 67(11): 2944-2956.
[12]   孙泽绪. 抑制Runx2表达调控BMP2诱导的间充质干细胞成软骨及成骨分化. 重庆: 重庆医科大学, 2016.
[12]   Sun Z X. Suppression of Runx2 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. Chongqing: Chongqing Medical University, 2016.
[13]   Bruderer M, Richards R G, Alini M, et al. Role and regulation of RUNX2 in osteogenesis. European Cells & Materials, 2014, 28: 269-286.
[14]   Kobayashi H, Gao Y H, Ueta C, et al. Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochemical and Biophysical Research Communications, 2000, 273(2): 630-636.
pmid: 10873656
[15]   Shang G W, Wang Y D, Xu Y, et al. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. Journal of Cellular Physiology, 2018, 233(8): 6041-6051.
doi: 10.1002/jcp.v233.8
[16]   Cui Y, Lu S, Tan H B, et al. Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein a-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cellular Physiology and Biochemistry, 2016, 39(4): 1347-1359.
doi: 10.1159/000447839 pmid: 27607236
[17]   Duan L J, Zhao H, Xiong Y, et al. MiR-16-2* interferes with WNT5A to regulate osteogenesis of mesenchymal stem cells. Cellular Physiology and Biochemistry, 2018, 51(3): 1087-1102.
doi: 10.1159/000495489
[18]   Long H T, Sun B H, Cheng L, et al. MiR-139-5p represses BMSC osteogenesis via targeting wnt/β-catenin signaling pathway. DNA and Cell Biology, 2017, 36(8): 715-724.
doi: 10.1089/dna.2017.3657
[19]   Saiganesh S, Saathvika R, Arumugam B, et al. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. International Journal of Biological Macromolecules, 2019, 132: 541-549.
doi: S0141-8130(19)31581-8 pmid: 30951775
[20]   Tang Z R, Wang Z, Qing F Z, et al. Bone morphogenetic protein smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. Journal of Biomedical Materials Research Part A, 2015, 103(3): 1001-1010.
doi: 10.1002/jbm.a.35242
[21]   Liu S H, Liu Y, Jiang L B, et al. Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo. Biomaterials Science, 2018, 7(1): 362-372.
doi: 10.1039/C8BM00846A
[22]   姚运. 软骨细胞和骨髓间充质干细胞及BMP2在髁状突骨折时细胞分布的比较研究. 乌鲁木齐: 新疆医科大学, 2018.
[22]   Yao Y. Comparative analysis of cell distribution changes between chondrocytes and bone marrow stromal cells and BMP2 during condylar fractures process. Urumqi: Xinjiang Medical University, 2018.
[23]   Zhou X Z, Wang J, Sun H T, et al. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene. Cell and Tissue Research, 2016, 366(1): 143-153.
doi: 10.1007/s00441-016-2416-8
[24]   Conlan R S, Pisano S, Oliveira M I, et al. Exosomes as reconfigurable therapeutic systems. Trends in Molecular Medicine, 2017, 23(7): 636-650.
doi: 10.1016/j.molmed.2017.05.003
[25]   黄霸, 苏永蔚, 高艺萌, 等. BMP-2转染间充质干细胞上清对软骨的影响. 中国矫形外科杂志, 2019, 27(18): 1692-1697.
[25]   Huang B, Su Y W, Gao Y M, et al. Effect of supernatant of BMP- 2 transferred mesenchymal stem cells on cartilage. Orthopedic Journal of China, 2019, 27(18): 1692-1697.
[26]   Ren C, Gong W, Li F, et al. Pilose antler aqueous extract promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells by stimulating the BMP-2/Smad1, 5/Runx2 signaling pathway. Chinese Journal of Natural Medicines, 2019, 17(10): 756-767.
doi: 10.1016/S1875-5364(19)30092-5
[27]   Yuan S H, Pan Q, Fu C J, et al. Effect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cells. The Indian Journal of Medical Research, 2013, 138(1): 104-110.
[28]   Dolanmaz D, Saglam M, Inan O, et al. Monitoring bone morphogenetic protein-2 and -7, soluble receptor activator of nuclear factor-κB ligand and osteoprotegerin levels in the peri-implant sulcular fluid during the osseointegration of hydrophilic-modified sandblasted acid-etched and sandblasted acid-etched surface dental implants. Journal of Periodontal Research, 2015, 50(1): 62-73.
doi: 10.1111/jre.12182 pmid: 24697526
[29]   Wei B F, Wei W, Zhao B X, et al. Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS One, 2017, 12(2): e0169097.
doi: 10.1371/journal.pone.0169097
[30]   Ying J, Wang P E, Zhang S X, et al. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sciences, 2018, 192: 84-90.
doi: S0024-3205(17)30605-7 pmid: 29158053
[31]   Wu M R, Chen G Q, Li Y P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research, 2016, 4: 16009.
doi: 10.1038/boneres.2016.9
[32]   Anderson B A, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. Journal of Orthopaedic Research, 2017, 35(11): 2369-2377.
doi: 10.1002/jor.23552 pmid: 28244607
[33]   Retting K N, Song B E, Yoon B S, et al. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development, 2009, 136(7): 1093-1104.
doi: 10.1242/dev.029926 pmid: 19224984
[34]   Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Science, 2008, 99(11): 2107-2112.
doi: 10.1111/j.1349-7006.2008.00925.x
[35]   Bai Y, Ying Y. The post-translational modifications of smurf2 in TGF-β signaling. Frontiers in Molecular Biosciences, 2020, 7: 128.
doi: 10.3389/fmolb.2020.00128
[36]   Shariat M, Abedinia N, Rezaei N, et al. Increase concentration of transforming growth factor beta (TGF-β) in breast milk of mothers with psychological disorders. Acta Medica Iranica, 2017, 55(7): 429-436.
pmid: 28918612
[37]   Mohammad K S, Chen C G, Balooch G, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One, 2009, 4(4): e5275.
doi: 10.1371/journal.pone.0005275
[38]   Liu Z H, Lavine K J, Hung I H, et al. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Developmental Biology, 2007, 302(1): 80-91.
doi: 10.1016/j.ydbio.2006.08.071
[39]   桂方中. 氟对大鼠生长板软骨基质GAG成分及相关信号通路FGFR3、Ihh/PTHrP表达的影响. 沈阳: 中国医科大学, 2019.
[39]   Gui F Z. Effects of fluoride on the expression of GAG components and related signaling pathways FGFR3 and Ihh/PTHrP in rat growth plate cartilage. Shenyang: China Medical University, 2019.
[40]   Ornitz D M, Marie P J. Fibroblast growth factor signaling in skeletal development and disease. Genes & Development, 2015, 29(14): 1463-1486.
doi: 10.1101/gad.266551.115
[41]   刘爽, 谭天瑶, 郭晓英. 氟对体外培养大鼠跖骨纵向生长的影响及病理学改变. 中华地方病学杂志, 2015, 34(8): 564-568.
[41]   Liu S, Tan T Y, Guo X Y. Effects of fluoride on longitudinal growth and pathological changes of cultured rat metatarsal bones. Chinese Journal of Endemiology, 2015, 34(8): 564-568.
[42]   Cinque L, Forrester A, Bartolomeo R, et al. FGF signalling regulates bone growth through autophagy. Nature, 2015, 528(7581): 272-275.
doi: 10.1038/nature16063
[43]   Charoenlarp P, Rajendran A K, Fujihara R, et al. The improvement of calvarial bone healing by durable nanogel-crosslinked materials. Journal of Biomaterials Science, Polymer Edition, 2018, 29(15): 1876-1894.
doi: 10.1080/09205063.2018.1517403
[44]   Charles L F, Woodman J L, Ueno D, et al. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Experimental Gerontology, 2015, 64: 62-69.
doi: 10.1016/j.exger.2015.02.006 pmid: 25681640
[45]   Liu B, Gao J, Lyu B C, et al. Expressions of TGF-β2, bFGF and ICAM-1 in lens epithelial cells of complicated cataract with silicone oil tamponade. International Journal of Ophthalmology, 2017, 10(7): 1034-1039.
[46]   张文静, 王佳, 田梦婷, 等. 骨形态发生蛋白2及碱性成纤维生长因子2对大鼠骨髓间充质干细胞膜片增殖和成骨分化的影响. 中国组织工程研究, 2020, 24(1): 65-71.
[46]   Zhang W J, Wang J, Tian M T, et al. Effects of bone morphogenetic protein 2 and basic fibroblast growth factor 2 on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cell sheet. Chinese Journal of Tissue Engineering Research, 2020, 24(1): 65-71.
[47]   Feng L, Li Y H, Zeng W C, et al. Enhancing effects of basic fibroblast growth factor and fibronectin on osteoblast adhesion to bone scaffolds for bone tissue engineering through extracellular matrix-integrin pathway. Experimental and Therapeutic Medicine, 2017, 14(6): 6087-6092.
doi: 10.3892/etm.2017.5320 pmid: 29285162
[48]   Chen T Y, Che X D, Han P F, et al. MicroRNA-1 promotes cartilage matrix synthesis and regulates chondrocyte differentiation via post-transcriptional suppression of Ihh expression. Molecular Medicine Reports, 2020, 22(3): 2404-2414.
doi: 10.3892/mmr
[49]   Kim Y J, Kim H J, Im G I. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochemical and Biophysical Research Communications, 2008, 373(1): 104-108.
doi: 10.1016/j.bbrc.2008.05.183
[50]   Kugimiya F, Tei Y. Regulation of chondrogenesis by PTH/PTHrP signaling. Clinical Calcium, 2003, 13(1): 19-24.
[51]   黄远章. 条件性敲除Indian hedgehog对出生后小鼠生长板骨化早期的影响. 太原: 山西医科大学, 2016.
[51]   Huang Y Z. The influence of postnatal mice growth plate’s early ossification with conditional knockout Indian hedgehog. Taiyuan: Shanxi Medical University, 2016.
[52]   王子露, 孙雯, 周熙超, 等. 鼠源性甲状旁腺激素相关蛋白1~84片段的制备及其促进骨形成的作用. 南京医科大学学报(自然科学版), 2010, 30(5): 597-601.
[52]   Wang Z L, Sun W, Zhou X C, et al. Construction and expression of a recombinant mouse PTHrP 1-84 and its role in stimulating bone formation. Acta Universitatis Medicinalis Nanjing (Natural Science), 2010, 30(5): 597-601.
[53]   Engin F, Lee B. NOTCHing the bone: insights into multi-functionality. Bone, 2010, 46(2): 274-280.
doi: 10.1016/j.bone.2009.05.027
[54]   Manderfield L J, Aghajanian H, Engleka K A, et al. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge, England), 2015, 142(17): 2962-2971.
[54]   [ 55 Karystinou A, Roelofs A J, Neve A, et al. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Research & Therapy, 2015, 17(1): 147.
[56]   Wang C C, Inzana J A, Mirando A J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair. The Journal of Clinical Investigation, 2016, 126(4): 1471-1481.
doi: 10.1172/JCI80672
[57]   Novak S, Roeder E, Sinder B P, et al. Modulation of Notch1 signaling regulates bone fracture healing. Journal of Orthopaedic Research, 2020, 38(11): 2350-2361.
doi: 10.1002/jor.v38.11
[58]   Chen Z, Luo Q, Lin C C, et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Scientific Reports, 2016, 6: 30322.
doi: 10.1038/srep30322 pmid: 27444891
[59]   吴铭, 张岩. 调控骨髓间充质干细胞成骨分化的Wnt/β-catenin信号通路及相关因素. 中国组织工程研究, 2021, 25(1): 116-122.
[59]   Wu M, Zhang Y. Related factors regulating osteogenic differentiation of bone marrow mesenchymal stem cells through Wnt/β-catenin signaling pathway. Chinese Journal of Tissue Engineering Research, 2021, 25(1): 116-122.
[60]   Zhang Y J, Huang X H, Yuan Y H. MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. American Journal of Translational Research, 2017, 9(1): 136-145.
[61]   Golovchenko S, Hattori T, Hartmann C, et al. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone, 2013, 55(1): 102-112.
doi: 10.1016/j.bone.2013.03.019 pmid: 23567158
[62]   Akiyama H, Lyons J P, Mori-Akiyama Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes & Development, 2004, 18(9): 1072-1087.
doi: 10.1101/gad.1171104
[63]   Tu X L, Delgado-Calle J, Condon K W, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. PNAS, 2015, 112(5): E478-E486.
doi: 10.1073/pnas.1409857112
[64]   Zhao J Y, Duan X H, Wang Q T, et al. Progress on signal pathways related to bone metabolism in animals. Genetic, 2020, 42(10): 979-992.
[65]   Jiang X R, Guo N, Li X Q, et al. Long non-coding RNA HULC promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells via down-regulation of miR-195. European Review for Medical and Pharmacological Sciences, 2018, 22(10): 2954-2965.
doi: 15050 pmid: 29863237
[66]   Xia W Z, Zhuang L, Deng X, et al. Long noncoding RNA-p21 modulates cellular senescence via the Wnt/β-catenin signaling pathway in mesenchymal stem cells. Molecular Medicine Reports, 2017, 16(5): 7039-7047.
doi: 10.3892/mmr.2017.7430
[67]   Hu K Z, Jiang W, Sun H Y, et al. Long noncoding RNA ZBED3-AS1 induces the differentiation of mesenchymal stem cells and enhances bone regeneration by repressing IL-1β via Wnt/β-catenin signaling pathway. Journal of Cellular Physiology, 2019, 234(10): 17863-17875.
doi: 10.1002/jcp.v234.10
[68]   Li Z H, Hu H, Zhang X Y, et al. MiR-291a-3p regulates the BMSCs differentiation via targeting DKK1 in dexamethasone-induced osteoporosis. The Kaohsiung Journal of Medical Sciences, 2020, 36(1): 35-42.
doi: 10.1002/kjm2.v36.1
[69]   Xu G, Ding Z, Shi H F. The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells. Journal of Orthopaedic Surgery and Research, 2019, 14(1): 366.
doi: 10.1186/s13018-019-1399-z
[70]   Long F X, Ornitz D M. Development of the endochondral skeleton. Cold Spring Harbor Perspectives in Biology, 2013, 5(1): a008334.
doi: 10.1101/cshperspect.a008334
[1] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[2] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[3] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[4] LIANG Li-zhu, SUN Jia-nan, LI Kai, LIU Ming-wei, DING Chen, QIN Jun. Proteome-wide Screening of Transcription Factor DNA Binding Activity in HepG2 Cells after Oleic Acid Treatment[J]. China Biotechnology, 2015, 35(5): 22-31.
[5] WANG Ming-ke, SUN Hui-qin, SU Yong-ping, ZOU Zhong-min. Current Status and Application of Gene Trapping[J]. China Biotechnology, 2014, 34(12): 107-111.
[6] . Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 0-0.
[7] WAN Bing-liang, ZHA Zhong-ping, DU Xue-shu. Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 22-32.
[8] . The cis-elements and transcription factors of plant environmental response promoters[J]. China Biotechnology, 2007, 27(7): 122-128.