Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (7): 1-9    DOI: 10.13523/j.cb.2103067
    
RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7
LI Shi-rong1,CHEN Yang-qin1,ZHANG Chun-pan1,2,QI Wen-jie1,*()
1 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
2 National Clinical Research Center for Digestive Disease, Beijing 100050, China
Download: HTML   PDF(2074KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effect of RS4651 on the EMT of hepatic cell AML12 in mice and the potential mechanism.Methods: AML12 cells were treated with RS4651 at different concentrations. Western blot and RT-PCR was used to detect the expression of E-cadherin, N-cadherin and Vimentin of RS4651 treatment groups and control group to investigate the effect of RS4651 on EMT of AML12 cells and SMAD7-Knockdown AML12 cells. RNA-sequencing identified the key node genes in the signaling pathway and the interaction network of RS4651. The proliferation and migratory effects of RS4651 treatment on AML12 cells with or without silencing by SMAD7-siRNA.Results: RS4651 could significantly upregulate the expression of E-cadherin and downregulated the expression of N-cadherin and Vimentin in a concentration-dependent manner. RNA-sequencing data showed that the target gene was SMAD7 in TGF-β1 signalling pathway. The expression of E-cadherin was relatively decreased in the SMAD7-siRNA+RS (60 μmol/L) group compared with the RS (60 μmol/L) group, while the expression of N-cadherin and Vimentin were relatively increased, and the proliferation and migration of AML12 cells were also increased.Conclusion: RS4651 can inhibit EMT, proliferation and migration of mice hepatocyte AML12 cells through SMAD7.



Key wordsRS4651      SMAD7      EMT      Proliferation      Migration     
Received: 26 March 2021      Published: 03 August 2021
ZTFLH:  Q819  
Corresponding Authors: Wen-jie QI     E-mail: qwj02@126.com
Cite this article:

LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7. China Biotechnology, 2021, 41(7): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103067     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I7/1

Gene Forward primer Reverse primer
E-cadherin CGAGAGCTACACGTTCACGG GGGTGTCGAGGGAAAAATAGG
N-cadherin TGCGGTACAGTGTAACTGGG GAAACCGGGCTATCTGCTCG
Vimentin CGTCCACACGCACCTACAG GGGGGATGAGGAATAGAGGCT
GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA
Table 1 Q-RT-PCR primers for E-cadherin, N-cadherin, vimentin, GAPDH
Fig.1 RS4651 inhibited EMT of AML12 cells in a concentration-dependent manner (a)The effect of RS4651 on the protein expression of EMT index in AML12 cells (b) The effect of RS4651 on the mRNA expression of EMT index in AML12 cells. * P<0.05,** P<0.01
Fig.2 Transcriptome sequencing confirmed the pathway and target of RS4651’s inhibitory effect on EMT in AML12 cells (a) (b) The number of differentially expressed genes (c) Kegg enrichment analysis of the top 20 most significant cell component signals in differentially expressed genes (d) STRING analyzes the interaction network of nine differentially expressed genes in the TGF-β signaling pathway
Fig.3 The effect of RS4651 on the EMT of AML12 cells with or without SMAD7 silenced (a) R4651 inhibits the protein expression of EMT indicator in AML12 cells through up-regulating SMAD7 (b) RS4651 up-regulates the mRNA expression of SMAD7 in AML12 cells (c) R4651 inhibits the mRNA expression of EMT indicator in AML12 cells through up-regulating SMAD7. * P<0.05,** P<0.01
Fig.4 RS4651 inhibited the proliferation ability of AML12 cells
Fig.5 RS4651 inhibited the migration ability of AML12 cells via SMAD7 The Transwell test showed that RS4651 inhibited the migration of AML12 cells through SMAD7 (original magnification: ×10; scale bars: 100 μm), and the number of migrating cells in each group. * P<0.05,** P<0.01
[1]   董经宇, 李庆昌. EMT与胚胎发育及肿瘤侵袭转移. 现代肿瘤医学, 2010, 18(2):396-398.
[1]   Dong J Y, Li Q C. Roles of EMT in embryonic development and tumor metastasis. Journal of Modern Oncology, 2010, 18(2):396-398.
[2]   潘琦璐, 马礼兵. 上皮-间质转化在恶性肿瘤发病和侵袭转移中的作用研究进展. 实用医学杂志, 2020, 36(17):2443-2447.
[2]   Pan Q L, Ma L B. Research progress based on the role of epithelial-mesenchymal transition in the pathogenesis and invasion of malignant tumors. The Journal of Practical Medicine, 2020, 36(17):2443-2447.
[3]   胡彦建, 韩明子, 胡彦华. 上皮间质转化在原发性肝癌侵袭、转移中的作用. 胃肠病学和肝病学杂志, 2014, 23(1):117-120.
[3]   Hu Y J, Han M Z, Hu Y H. The role of epithelial-mesenchymal transition in the invasion and metastasis of pri-mary liver cancer. Chinese Journal of Gastroenterology and Hepatology, 2014, 23(1):117-120.
[4]   Gheldof A, Berx G. Cadherins and epithelial-to-mesenchymal transition. Progress in Molecular Biology and Translational Science, 2013, 116:317-336.
[5]   王靖思, 刘玉琴, 陈兰羽, 等. 上皮-间质转化与肝纤维化的研究进展. 世界华人消化杂志, 2014, 22(20):2857-2862.
doi: 10.11569/wcjd.v22.i20.2857
[5]   Wang J S, Liu Y Q, Chen L Y, et al. Epithelial-mesenchymal transition and hepatic fibrosis. World Chinese Journal of Digestology, 2014, 22(20):2857-2862.
doi: 10.11569/wcjd.v22.i20.2857
[6]   范美玲, 应苗法, 赵蕊, 等. TGF-β信号通路在纤维化疾病中的作用研究进展. 解放军医学杂志, 2020, 45(11):1171-1177.
[6]   Fan M L, Ying M F, Zhao R, et al. Research progress on the role of TGF-β signaling pathway in fibrotic diseases. Medical Journal of Chinese People’s Liberation Army, 2020, 45(11):1171-1177.
[7]   Manvar D, Pelliccia S, Regina G L, et al. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. European Journal of Medicinal Chemistry, 2015, 90:497-506.
doi: 10.1016/j.ejmech.2014.11.042
[8]   陈永平. 浅析肝纤维化治疗现状. 现代实用医学, 2018, 30(3):281-283.
[8]   Chen Y P. Analysis of the current situation of liver fibrosis treatment. Modern Practical Medicine, 2018, 30(3):281-283.
[9]   Kang Y B, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004, 118(3):277-279.
doi: 10.1016/j.cell.2004.07.011
[10]   Corso G, Figueiredo J, de Angelis S P, et al. E-cadherin deregulation in breast cancer. Journal of Cellular and Molecular Medicine, 2020, 24(11):5930-5936.
doi: 10.1111/jcmm.v24.11
[11]   Jang N R, Choi J H, Gu M J. Aberrant expression of E-cadherin, N-cadherin, and P-cadherin in clear cell renal cell carcinoma: association with adverse clinicopathologic factors and poor prognosis. Applied Immunohistochemistry & Molecular Morphology, 2021, 29(3):223-230.
[12]   Hassan M, Aboushousha T, El-Ahwany E, et al. Impact of E-cadherin and its transcription regulators on assessing epithelial-mesenchymal transition in chronic HCV infection. Minerva Gastroenterol Dietol, 2021, 67(2):175-182.
[13]   Chapman H A. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annual Review of Physiology, 2011, 73:413-435.
doi: 10.1146/annurev-physiol-012110-142225 pmid: 21054168
[14]   Park S J, Choi Y S, Lee S, et al. BIX02189 inhibits TGF-beta1-induced lung cancer cell metastasis by directly targeting TGF-beta type I receptor. Cancer Letters, 2016, 381(2):314-322.
doi: 10.1016/j.canlet.2016.08.010
[15]   王靖思, 王逊, 刘玉琴, 等. 桃红芪术软肝煎基于TGF-β/SMAD信号通路逆转上皮-间质转化抗肝纤维化作用. 世界华人消化杂志, 2015, 23(13):2036-2049.
doi: 10.11569/wcjd.v23.i13.2036
[15]   Wang J S, Wang X, Liu Y Q, et al. Taohong Qizhu Ruangan Jian reverses epithelialmesenchymal transition via transforming growth factor beta/SMAD signaling pathway. World Chinese Journal of Digestology, 2015, 23(13):2036-2049.
doi: 10.11569/wcjd.v23.i13.2036
[16]   Wendt M K, Allington T M, Schiemann W P. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncology (London, England), 2009, 5(8):1145-1168.
doi: 10.2217/fon.09.90
[17]   Thiery J P, Acloque H, Huang R Y, et al. Epithelial-mesenchymal transitions in debelopment and disease. Cell, 2009, 139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376
[18]   Zhao X Y, Wu X, Qian M Q, et al. Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Letters, 2018, 428:34-44.
doi: 10.1016/j.canlet.2018.04.026
[19]   汤志杰, 张茂娜, 陈莉. 肝癌和肝纤维化发生EMT及相关信号通路的分子机制. 实用癌症杂志, 2014, 29(1):113-116.
[19]   Tang Z J, Zhang M N, Chen L. Molecular mechanism of EMT and related signal pathways in liver cancer and liver fibrosis. The Practical Journal of Cancer, 2014, 29(1):113-116.
[20]   Feng F F, Li N N, Cheng P, et al. Tanshinone IIA attenuatessilica-induced pulmonary fibrosis via inhibition of TGF-beta1-SMAD signaling pathway. Biomedicine & Pharmacotherapy, 2020, 121:109586.
doi: 10.1016/j.biopha.2019.109586
[21]   Higgins, Tang Y, Higgins C E, et al. TGF-beta1/p53signaling in renal fibrogenesis. Cellular Signalling, 2018, 43:1-10.
doi: 10.1016/j.cellsig.2017.11.005
[22]   Chen L, Yang T, Lu D W, et al. Central role of dysregulation of TGF-beta/SMAD in CKD progression and potential targets of its treatment. Biomedicine & Pharmacotherapy, 2018, 101:670-681.
doi: 10.1016/j.biopha.2018.02.090
[23]   Li N N, Feng F F, Wu K, et al. Inhibitory effects of astragaloside IV onsilica-induced pulmonary fibrosis via inactivating TGF-beta1/SMAD3signaling. Biomedicine & Pharmacotherapy, 2019, 119:109387.
doi: 10.1016/j.biopha.2019.109387
[24]   Huse K, Bakkebø M, Wälchli S, et al. Role of SMAD proteins in resistance to BMP-induced growth inhibition in B-cell lymphoma. PLoS One, 2012, 7(10):e46117.
doi: 10.1371/journal.pone.0046117
[25]   李戎, 常全颖, 陈罗西, 等. EMT全视角环境中艾灸加强化纤Ⅵ号方药液穴位皮肤吸收法调控肺纤维化大鼠内源性SMAD7表达以阻抑其TGF-β信号转导通路的实验研究. 四川中医, 2020, 38(9):41-46.
[25]   Li R, Chang Q Y, Chen L X, et al. Experimental study on moxibustion strengthening the acupoint skin absorption of huaxian No.6 prescription in EMT environment to regulate the expression of endogenous SMAD7 in pulmonary fibrosis rats to inhibit the TGF-β signal transduction pathway. Journal of Sichuan of Traditional Chinese Medicine, 2020, 38(9):41-46.
[26]   周小凡, 赵亚南, 肖敏勤, 等. 调控SMAD7基因对瘢痕疙瘩角质形成细胞上皮-间质转化的影响. 四川大学学报(医学版), 2020, 51(6):790-796.
[26]   Zhou X F, Zhao Y N, Xiao M Q, et al. Effects of regulating SMAD7 gene on epithelial-mesenchymal transition in keloid keratinocyte. Journal of Sichuan University (Medical Science Edition), 2020, 51(6):790-796.
[27]   李浩然, 李寿宁, 刘军, 等. 芹菜素通过上调SMAD-7抑制肺上皮细胞系A549细胞上皮间质转换. 临床和实验医学杂志, 2018, 17(1):44-46.
[27]   Li H R, Li S N, Liu J, et al. The inhibitory effect of apigenin on the epithelial-mesenchymal transition in the pulmonary epithelial cell line A549 by up-regulation of the SMAD-7. Journal of Clinical and Experimental Medicine, 2018, 17(1):44-46.
[28]   张彦璐, 陈影, 应国清. 上皮间质转化在肿瘤侵袭转移中的研究进展. 浙江化工, 2019, 50(7):11-15.
[28]   Zhang Y L, Chen Y, Ying G Q. The research progress of epithelial-mesenchymal transition in tumor invasion and metastasis. Zhejiang Chemical Industry, 2019, 50(7):11-15.
[29]   周昊, 封冰, 王锐. MicroRNA调控肝细胞癌EMT和细胞外基质重塑的研究进展. 东南国防医药, 2020, 22(3):277-282.
[29]   Zhou H, Feng B, Wang R. The research progress of microRNA to regulate EMT and extracellular matrix remodeling in hepatocellular carcinoma. Military Medical Journal of Southeast China, 2020, 22(3):277-282.
[30]   苏丹, 何祖坤, 白松. 结直肠癌EMT相关LncRNA的研究进展. 实用癌症杂志, 2019, 34(11):1911-1914.
[30]   Su D, He Z K, Bai S. Research progress on colorectal cancer EMT related to LncRNA. The Practical Journal of Cancer, 2019, 34(11):1911-1914.
[1] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[2] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[3] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[4] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[5] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[6] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] LIU Shan-hui,HE Wei,MA Wen-fei,LI Lan-lan,LU Jian-zhong,TAO Yan,ZHANG Jing,FU Sheng-jun. Research Progress of KLF8 Expression, Modification and Oncogenic Mechanism[J]. China Biotechnology, 2019, 39(8): 80-85.
[10] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[11] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[12] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[13] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[14] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[15] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.