Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 1-7    DOI: 10.13523/j.cb.2101041
    
Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells
TAO Shou-song1,REN Guang-ming2,YIN Rong-hua2,YANG Xiao-ming1,2,MA Wen-bing3,**(),GE Zhi-qiang1,**()
1 Department of Pharmaceutical Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
3 Institute of Health Service and Blood Academy of Military Medical Sciences, Beijing 100850, China
Download: HTML   PDF(20555KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Study the effect of deubiquitinating enzyme USP13 on the proliferation and apoptosis of human chronic myeloid leukemia K562 cells, and explore the underlying mechanism. Methods: Construction of the pLKO.1-shUSP13-GFP lentiviral interference vector and establishment of the USP13 knockdown K562 cell line using lentivirus. Western blot detected the USP13 knockdown efficiency in K562 cells. Flow cytometry analyzed the effect of USP13 knockdown on the proliferation and apoptosis of K562 cells. Co-immunoprecipitation and protein ubiquitination experiments explored the regulation mechanism of USP13 on K562 cells. Results: The pLKO.1-shUSP13-GFP vector was successfully constructed, and K562 cell line with stable knockdown of USP13 was obtained using the lentiviral system. Flow cytometry results showed that knocking down USP13 promoted K562 cell apoptosis and inhibited cell proliferation. Molecular mechanism studies found that knockdown of USP13 decreases c-Myc level by enhancing its ubiquitination. Conclusions: Data preliminarily revealed the molecular mechanism of USP13 regulating the proliferation and apoptosis of K562 cells, providing a potential target for the treatment of chronic myeloid leukemia.



Key wordsChronic myelogenous leukemia      K562 cells      USP13      Proliferation and apoptosis      c-Myc     
Received: 27 January 2021      Published: 01 June 2021
ZTFLH:  Q814  
Corresponding Authors: Wen-bing MA,Zhi-qiang GE     E-mail: mawenbing003@163.com;gezhiq@tju.edu.cn
Cite this article:

TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells. China Biotechnology, 2021, 41(5): 1-7.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101041     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/1

Primer name Primer ( 5'-3')
pLKO.1 shUSP13-1 F CCGGGCCAGTATCTAAATATGCCAACTCGAGTTGGCATATTTAGATACTGGCTTTTTG
pLKO.1 shUSP13-1 R AATTCAAAAAGCCAGTATCTAAATATGCCAACTCGAGTTGGCATATTTAGATACTGGC
pLKO.1 shUSP13-2 F CCGGCGATTTAAATAGCGACGATTACTCGAGTAATCGTCGCTATTTAAATCGTTTTTG
pLKO.1 shUSP13-2 R AATTCAAAAACGATTTAAATAGCGACGATTACTCGAGTAATCGTCGCTATTTAAATCG
USP13-RT-F TCTCCTACGACTCTCCCAATTC
USP13-RT-R CAGACGCCCCTCTTACCTTCT
Table 1 Primer name and sequence
Fig.1 High expression of USP13 in K562 cells Q-PCR (a) and Western blot (b) analysis the expression levels of USP13 in K562, MCF-7 and SW872 cells
Fig.2 Construction of pLKO.1-shUSP13-GFP vector and lentivirus packaged (a) Sequencing results of pLKO.1-shUSP13-GFP vector (b) Western blot analysis knockdown efficiency of USP13 in HEK293T cells (c) Fluorescence microscopy detects the lentivirus packaged in HEK293T cells
Fig.3 Construction of stable USP13 knockdown K562 cell lines (a) Flow cytometry analysis of GFP rate in K562 cells (b) Q-PCR and (c) Western blot analysis the knockdown efficiency of USP13 in K562 cells
Fig.4 Knockdown of USP13 promotes K562 cell apoptosis and inhibits cell proliferation Flow cytometry analysis of cell proliferation (a) or apoptosis (b)
Fig.5 Knockdown of USP13 decreases c-Myc level by enhancing its ubiquitinations (a) Western blot analysis of c-Myc levels in USP13 knockdown K562 cells (b) Co-immunoprecipitation analysis the interaction between USP13 and c-Myc in K562 cells (c) Detection the ubiquitination of c-Myc in USP13 knockdown K562 cells (d) c-Myc is degraded through the ubiquitin-proteasome pathway
[1]   Harrington P, Radia D, de Lavallade H. What are the considerations for tyrosine kinase inhibitor discontinuation in chronic-phase chronic myeloid leukemia? Expert Review of Hematology, 2020,13(3):213-222.
doi: 10.1080/17474086.2020.1717944 pmid: 31952452
[2]   Breccia M, Efficace F, Colafigli G, et al. Tyrosine kinase inhibitor discontinuation in the management of chronic myeloid leukemia: a critical review of the current practice. Expert Review of Hematology, 2020,13(12):1311-1318.
doi: 10.1080/17474086.2021.1852924
[3]   Bower H, Björkholm M, Dickman P W, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. Journal of Clinical Oncology, 2016,34(24):2851-2857.
doi: 10.1200/JCO.2015.66.2866
[4]   Cumbo C, Anelli L, Specchia G, et al. Monitoring of minimal residual disease (MRD) in chronic myeloid leukemia: recent advances. Cancer Management and Research, 2020,12:3175-3189.
doi: 10.2147/CMAR.S232752
[5]   Eick D. Getting to grips with c-Myc. eLife, 2018,7:32010. DOI: 10.7554/elife.32010.
[6]   Liu N, Li P, Zang S L, et al. Novel agent nitidine chloride induces erythroid differentiation and apoptosis in CML cells through c-Myc-miRNAs axis. PLoS One, 2015,10(2):e0116880.
doi: 10.1371/journal.pone.0116880
[7]   Scortegagna M, Subtil T, Qi J F, et al. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains,. Journal of Biological Chemistry, 2011,286(31):27333-27341.
doi: 10.1074/jbc.M111.218214 pmid: 21659512
[8]   Zhang J S, Zhang P J, Wei Y K, et al. Deubiquitylation and stabilization of PTEN by USP13. Nature Cell Biology, 2013,15(12):1486-1494.
doi: 10.1038/ncb2874
[9]   Man X J, Piao C Y, Lin X Y, et al. USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. Journal of Experimental & Clinical Cancer Research, 2019,38(1):259.
[10]   Qu Z, Zhang R, Su M, et al. USP13 serves as a tumor suppressor via the PTEN/AKT pathway in oral squamous cell carcinoma. Cancer Management and Research, 2019,11:9175-9183.
doi: 10.2147/CMAR
[11]   Huang J, Gu Z L, Chen W, et al. Knockdown of ubiquitin-specific peptidase 13 inhibits cell growth of hepatocellular carcinoma by reducing c-Myc expression. The Kaohsiung Journal of Medical Sciences, 2020,36(8):615-621.
doi: 10.1002/kjm2.v36.8
[12]   Zhang S Z, Zhang M Y, Jing Y, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nature Communications, 2018,9:215.
doi: 10.1038/s41467-017-02693-9
[13]   Fang X G, Zhou W C, Wu Q L, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. The Journal of Experimental Medicine, 2017,214(1):245-267.
doi: 10.1084/jem.20151673
[14]   Shao S, Li S, Qin Y W, et al. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia. International Journal of Oncology, 2014,44(5):1661-1668.
doi: 10.3892/ijo.2014.2313
[15]   Liao Y N, Liu N N, Xia X H, et al. USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discovery, 2019,5:24.
doi: 10.1038/s41421-019-0092-z
[16]   Zhao X S, Fiske B, Kawakami A, et al. Regulation of MITF stability by the USP13 deubiquitinase. Nature Communications, 2011,2:406-414.
doi: 10.1038/ncomms1414
[17]   Guo J, Zhang J L, Liang L, et al. Potent USP10/13 antagonist spautin-1 suppresses melanoma growth via ROS-mediated DNA damage and exhibits synergy with cisplatin. Journal of Cellular and Molecular Medicine, 2020,24(7):4324-4340.
doi: 10.1111/jcmm.v24.7
[1] ZHANG Jian,JIANG Zhi-ping,XU Ping,HE Qun,WANG Qing,ZHU Yan,ZHAO Xie-lan. Study on Monitoring of Imatinib Serum Level Guides Management of Chronic Myelogenous Leukemia Patients[J]. China Biotechnology, 2019, 39(9): 25-32.
[2] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[3] Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging[J]. China Biotechnology, 2018, 38(2): 61-67.
[4] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[5] HU Min, SONG Pei-pei, ZHAN Xiao-qin, LÜ Zi-lan, CHEN Chu, SHI Qiong, WENG Ya-guang. C-Myc Affects Esophageal Squamous Cancer Sensitivity to Paclitaxel by Regulating BubR1 Expression[J]. China Biotechnology, 2013, 33(4): 22-27.