Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 4-12    DOI: 10.13523/j.cb.2101026
    
GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway
OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian()
Experimental Center, Beijing Friendship Hospital, Beijing Institute of Clinical Medicine, Beijing 100875, China
Download: HTML   PDF(2099KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate whether General transcription factor II subunit 2(GTF2H2) affects the proliferation and migration of Hep3B cells and the underlying molecular mechanism. Methods: The GTF2H2 knockdown Hep3B cell model was constructed by transfecting GTF2H2-siRNA. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the GTF2H2 knockdown effect in Hep3B cells. MTS cell proliferation assay kit was used to detect the proliferation ability of GTF2H2 knockdown Hep3B cells. The migration ability of GTF2H2 knockdown Hep3B cells was evaluated by cell Transwell assay. Western blotting was used to detect whether GTF2H2 knockdown affects tumor associated molecular signaling pathway. Results: The proliferation and migration ability of GTF2H2 knockdown Hep3B cells was stronger than that of the controls. Western blotting showed that the expression of p-AKT pathway protein in GTF2H2 knockdown Hep3B cells was significantly increased. Conclusion: GTF2H2 may affect the proliferation and migration ability of Hep3B cells by the regulation of the AKT molecular signal pathway.



Key wordsHep3B      GTF2H2      p-AKT      Proliferation      Migration     
Received: 20 January 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Jian HUANG     E-mail: huangj1966@hotmail.com
Cite this article:

OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway. China Biotechnology, 2021, 41(6): 4-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101026     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/4

上游引物 下游引物
GTF2H2-V1 TA-GTCCTCCTCCTGCTAGCT GGGTTTTGCATCCTGGTCAG
GTF2H2-V2 GCAGCCTTACAACTTGCGAT CGCGAACTTCTGCAGACAAT
GTF2H2-V3 ATTGTCTGCAGAAGTTCGCG AGCTAGCAGGAGGAGGACTA
GAPDH GAGTCAACGGATTTGGTCGT GACAAGCTTCCCGTTCTCAG
Table 1 The primer sequence table of GTF2H2-V1,GTF2H2-V2,GTF2H2-V3 and GAPDH
Fig.1 The GTF2H2 knockdown Hep3B cell model was constructed (a) The expression of GTF2H2 mRNA in control group and GTF2H2 knockdown group was detected by q-RT-PCR (b) The protein expression of GTF2H2 in control group and GTF2H2 knockdown group was detected by Western blotting (c)The statistical graph of Grayscale value of protein strip in control group and GTF2H2 knockdown group* P<0.05,** P<0.01
GTF2H2-siRNAs GTF2H2-V1 GTF2H2-V2 GTF2H2-V3
t P t P t P
GTF2H2-siRNA1 13.54 0.005 4 18.56 0.002 9 8.364 0.014 0
GTF2H2-siRNA2 20.76 0.002 3 23.47 0.001 8 5.026 0.037 4
GTF2H2-siRNA3 8.818 0.012 6 10.68 0.008 7 3.839 0.061 7
Table 2 Statistical value of GTF2H2 mRNA expression in Hep3B cells treated with GTF2H2-siRNAs
Fig.2 The proliferation ability was enhanced in GTF2H2 knockdown Hep3B cells (a) The proliferation ability of Hep3B cells in the control group and GTF2H2 knockdown group was detected by MTS assay at different time points (b) The protein expression of CyclinD1 and c-Myc in Hep3B cells of control group and GTF2H2 knockdown group was detected by Western blotting assay (c) Statistical results of the protein expression of CylinD1 and c-Myc in the control group and GTF2H2 knockdown group* P<0.05,** P<0.01
0H 24H 48H 72H 96H
t 2.211 16.94 8.495 3.274 2.629
P 0.069 <0.000 1 0.000 1 0.017 0.039 1
Table 3 Statistical table of OD value of Hep3B cell proliferation in control group and GTF2H2 knockdown group at different time
Fig.3 The migration ability was promoted in GTF2H2 knockdown Hep3B cells (a) Cell migration assay was used to detect the membrane penetration ability of Hep3B cells in the control group and GTF2H2 knockdown group (b) Comparision of the number of cell migration between the control group and GTF2H2 knockdown group(* P<0.05,** P<0.01) (c) Western blotting assay was used to detect the protein expression of MMP9 in Hep3B cells of control group and GTF2H2 knockdown group (d) Statistical results of the protein expression of MMP9 in the control group and GTF2H2 knockdown group(* P<0.05,** P<0.01)
Fig.4 The AKT molecular signal pathway was activated in GTF2H2 knockdown Hep3B cells (a) The protein expression of p-AKT,p-ERK,p-P38,p-P65 and p-stat3 in Hep3B cells of control group and GTF2H2 knockdown group was detected by Western blotting assay (b) Statistical results of p-AKT protein expression in the control group and the GTF2H2 knockdown group using total AKT as the standard(* P<0.05,** P<0.01) (c) Statistical results of p-ERK protein expression in the control group and GTF2H2 knockdown group using total ERK as the standard(* P<0.05,** P<0.01) (d) The statistical results of p-P38,p-P65 and p-stat3 protein expression in the control group and the GTF2H2 knockdown group(* P<0.05,** P<0.01)
[1]   Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. Journal of Cellular Physiology, 2018, 233(10):6486-6508.
doi: 10.1002/jcp.26586 pmid: 29672851
[2]   Yang J D, Hainaut P, Gores G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 2019, 16(10):589-604.
[3]   Yang J D, Roberts L R. Epidemiology and management of hepatocellular carcinoma. Infectious Disease Clinics of North America, 2010, 24(4):899-919.
doi: 10.1016/j.idc.2010.07.004
[4]   Assfalg R, Lebedev A, Gonzalez O G, et al. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Research, 2012, 40(2):650-659.
doi: 10.1093/nar/gkr746 pmid: 21965540
[5]   Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell, 2002, 109(3):297-306.
doi: 10.1016/S0092-8674(02)00729-8
[6]   Jaitovich-Groisman I, Benlimame N, Slagle B L, et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. Journal of Biological Chemistry, 2001, 276(17):14124-14132.
doi: 10.1074/jbc.M010852200
[7]   Zurita M, Merino C. The transcriptional complexity of the TFIIH complex. Trends in Genetics, 2003, 19(10):578-584.
pmid: 14550632
[8]   Zhao Z, Chen G Y, Long J, et al. Genomic losses at 5q13.2 and 8p23.1 in dysplastic hepatocytes are common events in hepatitis B virus-related hepatocellular carcinoma. Oncology Letters, 2015, 9(6):2839-2846.
doi: 10.3892/ol.2015.3140
[9]   Vara J Á F, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews, 2004, 30(2):193-204.
doi: 10.1016/j.ctrv.2003.07.007
[10]   Nitulescu G, van de Venter M, Nitulescu G, et al. The Akt pathway in oncology therapy and beyond (Review). International Journal of Oncology, 2018, 53(6):2319-2331. DOI: 10.3892/ijo.2018.4597.
doi: 10.3892/ijo.2018.4597 pmid: 30334567
[11]   Fan L, Zhu H Y, Tao W W, et al. Euphorbia factor L2 inhibits TGF-β-induced cell growth and migration of hepatocellular carcinoma through AKT/STAT3. Phytomedicine, 2019, 62:152931.
doi: S0944-7113(19)30100-X pmid: 31085375
[12]   Liu F F, Yang X T, Geng M Y, et al. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8(4):552-562.
doi: 10.1016/j.apsb.2018.01.008
[13]   Cheng X, Yang Y, Fan Z, et al. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene, 2015, 34(44):5570-5581.
doi: 10.1038/onc.2015.14 pmid: 25746000
[14]   Li Y J, Wei Z M, Meng Y X, et al. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World Journal of Gastroenterology, 2005, 11(14):2117-2123.
doi: 10.3748/wjg.v11.i14.2117
[15]   Aerts M, Benteyn D, Van Vlierberghe H, et al. Current status and perspectives of immune-based therapies for hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22(1):253-261.
doi: 10.3748/wjg.v22.i1.253
[16]   Zhang X F, Li J, Shen F, et al. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 2018, 33(2):347-354.
doi: 10.1111/jgh.2018.33.issue-2
[17]   Humbert S, van Vuuren H, Lutz Y, et al. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. The EMBO Journal, 1994, 13(10):2393-2398.
doi: 10.1002/embj.1994.13.issue-10
[18]   Wang X W, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genetics, 1995, 10(2):188-195.
doi: 10.1038/ng0695-188
[19]   周冬虎, 李艳萌, 贾思雨, 等. GTF2H2的核苷酸切除修复功能对肝癌细胞增殖和凋亡的影响. 临床和实验医学杂志, 2020, 19(3):225-229.
[19]   Zhou D H, Li Y M, Jia S Y, et al. Effects of NER function of GTF2H2 on proliferation and apoptosis of liver cancer cells. Journal of Clinical and Experimental Medicine, 2020, 19(3):225-229.
[20]   Chalhoub N, Baker S J. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology, 2009, 4:127-150.
doi: 10.1146/annurev.pathol.4.110807.092311 pmid: 18767981
[21]   Cantley L C, Neel B G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8):4240-4245.
[22]   Downward J. PI 3-kinase, Akt and cell survival. Seminars in Cell & Developmental Biology, 2004, 15(2):177-182.
[23]   Hager M, Haufe H, Lusuardi L, et al. P-AKT overexpression in primary renal cell carcinomas and their metastases. Clinical & Experimental Metastasis, 2010, 27(8):611-617.
[24]   Wang Z W, Qu L, Deng B, et al. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Scientific Reports, 2016, 6(1):1-12.
doi: 10.1038/s41598-016-0001-8
[25]   Fujimori Y, Inokuchi M, Takagi Y, et al. Prognostic value of RKIP and p-ERK in gastric cancer. Journal of Experimental & Clinical Cancer Research, 2012, 31(1):1-8.
[26]   Li S, Lv M, Qiu S, et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. Journal of Cellular and Molecular Medicine, 2019, 23(6):4338-4348.
doi: 10.1111/jcmm.2019.23.issue-6
[27]   Lee H, Jeong A J, Ye S K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 2019, 52(7):415-423.
doi: 10.5483/BMBRep.2019.52.7.152
[28]   Yong H Y, Koh M S, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opinion on Investigational Drugs, 2009, 18(12):1893-1905.
doi: 10.1517/13543780903321490
[1] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[2] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[3] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[4] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[5] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[6] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[10] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[11] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[12] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[13] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[14] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[15] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.