Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 1-9    DOI: 10.13523/j.cb.2007018
    
CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion
HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun()
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(28087KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The malignant proliferation and easy invasion and metastasis of breast cancer cells are directly related to their harm to patients. Therefore, it is of great significance to explore the molecular mechanism of breast cancer cells for their effective prevention and treatment. QSOX1 is one of the members of thiol oxidase family. It has been proved that QSOX1 plays an important role in the formation of disulfide bond and extracellular matrix during protein folding. QSOX1 is over expressed in many kinds of cancer cells, including breast cancer and pancreatic cancer. The present study explored the possible role of QSOX1 in breast cancer cell proliferation, invasion and metastasis. Methods: By using CRISPR/Cas9 technology to construct QSOX1 gene knock-out and knock-in models of breast cancer cells, the effects of QSOX1 on the proliferation, invasion and migration of MCF-7 cells were analyzed. Results: The results showed that QSOX1 gene knock-out and knock-in MCF-7 cell lines were successfully constructed by CRISPR/Cas9 gene editing technology. Compared with WT cells, the proliferation ability of QSOX1 KO1 cells decreased significantly, the migration and invasion of cancer cells in vitro were significantly inhibited. However, the proliferation, migration and invasion capabilities of QSOX1 KI cells have been significantly improved. Conclusion: The study initially reveals the role of QSOX1 in the occurrence and development of cancer, and lays an important foundation for further elucidation of its molecular mechanism and design of targeted drugs.



Key wordsQSOX1      MCF-7 cells      Proliferation and invasion      CRISPR /Cas9     
Received: 13 July 2020      Published: 11 December 2020
ZTFLH:  Q789  
Corresponding Authors: Wen-yun ZHENG     E-mail: zwy@ecust.edu.edu.cn
Cite this article:

HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion. China Biotechnology, 2020, 40(11): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007018     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/1

Fig.1 Design of sgRNA targeting QSOX1 gene (a) Structure of pX459 plasmid (b) Recognition sequence of sgRNA targeting exons7 and 8 (c) Schematic diagram of expression vector pX459-QSOX1-sgRNA
sgRNA 序列(5'-3')
QSOX1-sgRNA1 F1: CACCGACCTGCCCACTTCTATCCGC
R1: AAACGCGGATAGAAGTGGGCAGGTC
QSOX1-sgRNA2 F2: CACCGGGAGCTATCTTGTTAGCAG
R2: AAACCTGCTAACAAGATAGCTCCC
QSOX1-sgRNA3 F3: CACCGTAAGCGGTATAGAAGGACC
R3: AAACGGTCCTTCTATACCGCTTAC
Table 1 Oligonucleotide sequence of QSOX1-sgRNA
Fig.3 Schematic diagram of pX459-QSOX1-sgRNA mediated integration of exogenous expression cassettes into specific MCF-7 loci
Prime Sequence(5'-3') The product of PCR
sgRNA1/2-F TCCAGAGCATGTGCAGTGAT 533bp
sgRNA1/2-R AAATGCCGCTCCCACACATT
SgRNA3-F GGCCTGGAGAGAAAACTCC 622bp
sgRNA3-R AGGCTGGAGGGTATCACCTAT
Table 2 Primer sequences
Fig.2 Sequencing results of pX459-QSOX1-sgRNA plasmids
Fig.4 T7EN1 enzyme was employed to identify the mutation in the sgRNA sites
Fig.5 Generation and validation of stable cell line knock-out and knock-in QSOX1 gene (a), (b) QSOX1 protein expression in the selected monoclonal cells were confirmed by Western blot (c) Sequencing result of QSOX1 KO1, comparison of QSOX1 sequence in QSOX1 KO1 and the original QSOX1 sequence
Fig.6 Effect of QSOX1 gene knock-out and knock-in on the proliferation of MCF-7 cells (a) The proliferation curve (MTT) * P<0.05 (b) The results of colony formation assay
Fig.7 Effect of QSOX1 gene knock-out and knock-in on the migration and invasion of MCF-7 cells (a) Wound-healing assay (b) Transwell assay
[1]   Alakesh B, Eric R, Muthu S, et al. Proteomic analysis of inflammatory biomarkers associated with breast cancer recurrence. Military Medicine, 2020,185:669-675.
doi: 10.1093/milmed/usz254 pmid: 32074342
[2]   Rodgers K M, Udesky J O, Rudel R A, et al. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ Res, 2018,160:152-182.
doi: 10.1016/j.envres.2017.08.045 pmid: 28987728
[3]   Teegarden D, Romieu I, Lelièvre S A, et al. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? Nutrition Research Reviews, 2012,25(1):68-95.
doi: 10.1017/S0954422411000199 pmid: 22853843
[4]   Wong G S, Rustgi A K. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. British Journal of Cancer, 2013,108(4):755-761.
doi: 10.1038/bjc.2012.592 pmid: 23322204
[5]   Box C, Rogers S J, Mendiola M, et al. Tumour-microenvironmental interactions: paths to progression and targets for treatment. Seminars in Cancer Biology, 2010,20(3):128-138.
[6]   Kim S H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol, 2011,209(2):139-151.
[7]   Ostrowski M C, Kistler W S. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry, 1980,19(12):2639-2645.
doi: 10.1021/bi00553a016 pmid: 7397095
[8]   Rudolf J, Pringle M A, Bulleid N J. Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochemical Journal, 2013,454(2):181-190.
[9]   Thorpe C, Hoober K L, Raje S, et al. Sulfhydryl oxidases: Emerging catalysts of protein disulfide bond formation in eukaryotes. Archives of Biochemistry & Biophysics, 2002,405(1):1-12.
doi: 10.1016/s0003-9861(02)00337-5 pmid: 12176051
[10]   Alon A, Heckler E J, Thorpe C, et al. QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains. Febs Letters, 2010,584(8):1521-1525.
[11]   Morel C, Adami P, Musard J F, et al. Involvement of sulfhydryl oxidase qsox1 in the protection of cells against oxidative stress-induced apoptosis. Experimental Cell Research, 2007,313(19):3971-3982.
doi: 10.1016/j.yexcr.2007.09.003 pmid: 17927979
[12]   Katchman B A, Ocal I T, Cunliffe H E, et al. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Research, 2013,15(2):R28-R43.
doi: 10.1186/bcr3407 pmid: 23536962
[13]   Katchman B A, Antwi K, Hostetter G, et al. Quiescin sulfhydryl oxidase 1 promotes invasion of pancreatic tumor cells mediated by matrix metalloproteinases. Molecular Cancer Research Mcr, 2011,9(12):1621-1631.
doi: 10.1158/1541-7786.MCR-11-0018 pmid: 21989104
[14]   Coppock D L, Thorpe C. Multidomain flavin-dependent sulfhydryl oxidases. Antioxidants & Redox Signaling, 2006,8(3-4):300-311.
doi: 10.1089/ars.2006.8.300 pmid: 16677076
[15]   Soloviev M, Esteves M P, Amiri F, et al. Elevated transcription of the gene qsox1 encoding quiescin q6 sulfhydryl oxidase 1 in breast cancer. PLoS One, 2013,8(2):1-11.
[16]   Pernodet N, Hermetet F, Adami P, et al. High expression of QSOX1 reduces tumorogenesis, and is associated with a better outcome for breast cancer patients. Breast Cancer Research, 2012,14(5):1-15.
[17]   Padmalaya D, Gabrielle M S, Lyme-Marie P, et al. Illuminating luminal B: QSOX1 as a subtype-specific biomarker. Breast Cancer Research, 2013,15(3):104.
[18]   Heckler E J, Alon A, Fass D, et al. Human quiescin-sulfhydryl oxidase, qsox1: Probing internal redox steps by mutagenesis. Biochemistry, 2008,47(17):4955-4963.
doi: 10.1021/bi702522q pmid: 18393449
[19]   Knutsvik G, Collett K, Arnes J, et al. QSOX1 expression is associated with aggressive tumor features and reduced survival in breast carcinomas. Mod Pathol, 2016,29(12):1485-1491.
pmid: 27562495
[20]   Ilani T, Alon A, Grossman I, et al. A secreted disulfide catalyst controls extracellular matrix composition and function. Science, 2013,341(6141):74-76.
doi: 10.1126/science.1238279 pmid: 23704371
[21]   Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010,327(5962):167-170.
[22]   Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 2014,23(1):R40-R46.
[23]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[24]   Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31(3):230-232.
doi: 10.1038/nbt.2507 pmid: 23360966
[25]   Lee C H, Huang C S, Chen C S, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. Journal of the National Cancer Institute, 2010,102(17):1322-1335.
doi: 10.1093/jnci/djq300 pmid: 20733118
[26]   Wright A V, Nu?ez J K, Doudna J A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell, 2016,164(1-2):29-44.
pmid: 26771484
[27]   Rorres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9: A revolutionary tool for cancer modelling. International Journal of Molecular Sciences, 2015,16(9):22151-22168.
doi: 10.3390/ijms160922151 pmid: 26389881
[28]   Lee C H, Huang C S, Chen C S, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. Journal of the National Cancer Institute, 2010,102(17):1322-1335.
doi: 10.1093/jnci/djq300 pmid: 20733118
[29]   Ratan Z A, Son Y J, Haidere M F. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Therapeutic Advances in Medical Oncology, 2018,10:1-15.
[30]   Jubair L, McMillan N A J. The Therapeutic potential of CRISPR/Cas9 systems in oncogene-addicted cancer types: Virally driven cancers as a model system. Mol Ther Nucleic Acids, 2017,8:56-63.
doi: 10.1016/j.omtn.2017.06.006 pmid: 28918056
[31]   Sebolt-Leopold J S, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer, 2004,4(12):937-947.
doi: 10.1038/nrc1503 pmid: 15573115
[32]   De Palma M, Biziato D, Petrova T V. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer, 2017,17(8):457-474.
doi: 10.1038/nrc.2017.51 pmid: 28706266
[33]   Wang Y, Wang H, Pan T, et al. STIM1 silencing inhibits the migration and invasion of A549 cells. Mol Med Rep, 2017,16(3):3283-3289.
doi: 10.3892/mmr.2017.7010 pmid: 28713917
[34]   Dong H, Diao H, Zhao Y, et al. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Proliferation, 2019,52(5):e12633.
doi: 10.1111/cpr.12633 pmid: 31264317
[35]   Radisky E S, Radisky D C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia, 2010,15(2):201-212.
doi: 10.1007/s10911-010-9177-x pmid: 20440544
[36]   Zhou L, Chen H M, Qu S, et al. Reduced QSOX1 enhances radioresistance in nasopharyngeal carcinoma. Oncotarget, 2017,9(3):3230-3241.
pmid: 29423042
[37]   Portes K F, Ikegami C M, Getz J, et al. Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Histol, 2008,39(2):217-225.
doi: 10.1007/s10735-007-9156-8 pmid: 18034316
[1] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[2] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[5] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[6] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[7] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[8] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[9] Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model[J]. China Biotechnology, 2019, 39(5): 80-87.
[10] Miao QIAO,Jie HU,Bin-li MAO,Si-die PI,Yuan HU. The Inhibition of IFN Induce SAMHD1 to the Replication of HBV in Huh7.0 Cells[J]. China Biotechnology, 2019, 39(3): 1-6.
[11] Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses[J]. China Biotechnology, 2019, 39(3): 37-45.
[12] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[13] Min-min ZHUANG,Xiao-hui JIA,Ding-ji SHI,Jia-cheng ZHU,Si-yu FENG,Pei-min HE,Rui JIA. vp28 Gene Expression and Photosynthetic Characteristics of Transgenic Synechococcus sp. PCC 7942[J]. China Biotechnology, 2018, 38(4): 30-37.
[14] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[15] Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism[J]. China Biotechnology, 2017, 37(12): 40-48.