Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 59-64    DOI: 10.13523/j.cb.20140410
    
Rapid Assembly of Long-term HSA/Exendin 4 Fusion Protein via BglBrick Method
SHAO Yu1,2, QU Guo-long2, JIN Jing2,3, WANG Wei2,4, TAN Jun-jie2, KAN Nai-peng1,2, LI Yu-xia2, LIU Gang2, CHEN Hui-peng2
1. College of Life Science, Anhui University, Hefei 230601, China;
2. Institute of Biotechnology AMMS, Beijing 100071, China;
3. Shenyang Pharmaceutical University, Shenyang 110016, China;
4. Jilin University, Changchun 130012, China
Download: HTML   PDF(666KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Different kinds of HSA/Exendin-4 fusion protein are rapidly constructed using BglBrick method of synthetic biology. It lays a foundation for screening and comparison of the bioactivity of fusion protein in each HSA/Exendin-4. Method: Two basic Brick expression vectors, pPICZαA-Exendin-4 and pPICZαA-HSA, are constructed based on the yeast expression vector, pPICZαA plasmid. Rapid assemblies of different amounts of Exendin-4 molecules at the terminals of HSA are achieved via BglBrick method. Ten constructed HSA/Exendin-4 fusion proteins are integrated into the chromosome of Pichia pastoris KM71H, and the corresponding target proteins are expressed after methanol induction. Result:The constructed HSA/Exendin-4 fusion proteins via BglBrick method successfully express the corresponding target protein in Pichia pastoris after methanol induction. Conclusion: The use of BglBrick method can help fulfill the rapid assembly of long-term HAS fusion proteins.



Key wordsBglBrick      Exendin-4      HAS fusion protein      Synthetic biology     
Received: 24 December 2013      Published: 25 April 2014
ZTFLH:  Q786  
Cite this article:

SHAO Yu, QU Guo-long, JIN Jing, WANG Wei, TAN Jun-jie, KAN Nai-peng, LI Yu-xia, LIU Gang, CHEN Hui-peng. Rapid Assembly of Long-term HSA/Exendin 4 Fusion Protein via BglBrick Method. China Biotechnology, 2014, 34(4): 59-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140410     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/59


[1] DeFronzo R A, Ratner R E, Han J, et al.Effects of exenatide (exendin- 4) on glycemic control and weightover 30 weeks in metformin - treated patients withtype 2 diabetes. Diabetes Care, 2005, 28(5): 1092.

[2] Kolterman O G, Buse J B, Fineman M S, et al. Synthetic Exendin-4 (AC2993) significantly reduces postprandial and fasting plasma glucose in subjects with type2 diabetes. J Clin Endocrinal Metab, 2003, 88(7): 3082- 3089.

[3] De Leon D D, Crulchlow M F, Ham J Y, et al.Role of glucagon - like peptide - 1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol, 2006, 38(5~ 6): 845.

[4] 王秀贞,吴军,孟宪军.长效多肽药物合成研究进展.中国生物工程杂志.2003, 23(10):23-27. Wang X Z, Wu J, Meng X J. Progress in the synthesis of long-term peptide medicines. China Biotechnology, 2003, 23(10):23-27.

[5] Chamow S M, Duliege A M, Ammann A, et al. CD4 immunoadhesinsin anti -HIVtherapy:New developments, Int J Cancer, 1992, 7: 69.

[6] Tanaka T,Shiramoto S, Miyashita M, et al. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor mediated endocytosis (RME).International Journal of Pharmaceutics,2004,277:39-61.

[7] Balance D J. 重组人生长激素和人血清白蛋白融合蛋白.英国, CN1207131, 1999. Balance D J. Recombinant Human Growth Hormone and the fusion protein of Human Serum Albumin. Britain, CN1207131, 1999.

[8] Goodey A R. The production of heterologousplasmaproteins. Trends Biotechnol, 1993, 11(10): 430-433.

[9] Yeh P, Landais D, Lemaitre M, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci USA, 1992, 89 (5): 1904- 1908.

[10] Osborn B L, Olsen H S, Nardelli B, et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther, 2002, 303 (2): 540- 548.

[11] Sung C, Nardelli B, LaFleur D W, et al. An IFN-beta-albumin fusion protein that displays improved pharmacokinetic and pharmacodynamic properties in nonhuman primates. J Interferon Cytokine Res, 2003, 23 (1): 25- 36.

[12] Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol,2008, 26:787-793.

[13] Endy D. Foundations for engineering biology. Nature, 2005, 438:449-453.

[14] 赵学明,王庆昭.合成生物学:学科基础、研究进展与前景展望.前沿科学,2007,3:56-66. Zhao X M, Wang Q Z. Synthetic biology: Fundamentals advances and prospect. Frontier Science, 2007, 3:56-66.

[15] Hobom B. Gene surgery: on the threshold of synthetic biology. Medizinische Klinik, 1980, 75 (24):834- 841.

[16] 熊燕,陈大明,杨琛等.合成生物学发展现状与前景.生命科学志,2011, 23(9):826-837. Xiong Y, Chen D M, Yang C, et al. Progress and perspective of synthetic biology. Chinese Bulletin of Life Sciences, 2011, 23(9):826-837.

[17] 邢玉华,谭俊杰,李玉霞.合成生物学的关键技术及应用进展.中国医药生物技术.2012, 7(5):357-363. Xing Y H, Tan J J, Li Y X, et al. Key technology and application progress of synthetic biology. Chinese Medicinal Biotechnology, 2012, 7(5):357-363

[18] Anderson J C, Dueber J E, Leguia M, et al. BglBricks: a flexible standard for biological part assembly. J BiolEng, 2010, 4(1): 1-12.

[19] Knight T F. Idempotent vector design for standard assembly of biobricks. DSpace2003http://hdl.handle.net/1721.1/21168.

[20] Shetty R P, Endy D, Knight T F. Engineering BioBrick vectors from BioBrick parts. J Biol Eng,2008, 2(5):1-12.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[11] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[12] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[13] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[14] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.
[15] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.