Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (02): 102-115    DOI:
    
Fermentation of L-lactic Acid and Synthesis of Poly(L-lactic acid)
TIAN Kang-ming, ZHOU Li, CHEN Xian-zhong, ZUO Zhi-rui, SHI Gui-yang, WANG Zheng-xiang
Center for Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(663KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

L-lactic acid is widely used in food, pharmaceutical, cosmetic and industrial fields. Recent years, with the constant shortage of fossil resources, many synthetic polymer materials production has been limited. Therefore, L-lactic acid, which is maded based on biomass resources has been widely used for processing into poly L-lactic acid and other environment-friendly biodegradable materials. Due to the increasing demand for L-lactic acid, the efficient production of low-cost L-lactic acid has become particularly important.The breeding of L-lactic acid producing strain, the cheap resources development and utilization for L-lactic acid fermentation, L-lactic acid fermentation process and purification of L-lactic acid products are systematiclly focused on.For strains breeding, a number of excellent L-lactic acid producers have been obtained which can fermented cheap carbon source to lactic acid efficiently, and strains with low nutritional needs were also breeded. However, strains that have the integrated advantages needs to be further breeding; For fermentation substrates, application of a variety of cheap, abundant carbon sources for lactic acid efficiency fermentation have been already developed, but industrial-scale application of these substrates remains to be further studied; For fermentation process, environment-friendly and low labor intensity fermentation process has been developped, but the problem of high cost is still exists. For purification of products, the post-extraction process has been simplified through the production of breeding species with low nutritional requirements and the using of new fermentation process, but the actual applications still under the constraints of the high cost of the fermentation process. Finally, a short review on the chemical processing of poly L-lactic acid and biodegradation of poly L-lactic acid, and some suggestions were given.



Key wordsL-lactic acid      fermentation      Separation and purification      Poly (L-lactic acid)      Synthesis     
Received: 22 October 2010      Published: 18 February 2011
ZTFLH:  Q819  
Corresponding Authors: WANG Zheng-Xiang     E-mail: zxwang@jiangnan.edu.cn
Cite this article:

TIAN Kang-ming, ZHOU Li, CHEN Xian-zhong, ZUO Zhi-rui, SHI Gui-yang, WANG Zheng-xiang. Fermentation of L-lactic Acid and Synthesis of Poly(L-lactic acid). China Biotechnology, 2011, 31(02): 102-115.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I02/102

[1] Hofvendalh K,Hahn-Hgerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 2000, 26(2-4): 87-107.
[2] Datta R,Henry M. Lactic acid: recent advances in products, processes and technologies—a review. Journal of Chemical Technology & Biotechnology, 2006, 81(7): 1119-1129.
[3] Di Lorenzo M L. Crystallization behavior of poly (L-lactic acid), European Polymer Journal, 2005, 41(3): 569-575.
[4] Wee Y J, Kim J N, Ryu H W. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 2006, 44(2): 163-172.
[5] Solange I Mussatto, Marcela Fernandes, Ismael M Mancilha, et al. Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochemical Engineering Journal, 2008, 40(3): 437-444.
[6] Wang Q,Narita J W,Xie W, et al. Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage. Bioresource Technology, 2002, 84(3): 213-220.
[7] Sudheer K Singh, Syed U Ahmed, Ashok Pandey. Metabolic engineering approaches for lactic acid production. Process Biochemistry, 2006, 41(5): 991-1000.
[8] Rojan P John, Madhavan Nampoothiri K. Ashok Pandey. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 2007, 74(3): 524-534.
[9] Naveena B J. Amylolytic bacterial L(+) lactic acid production in solid state fermentation and molecular identification of the strain. Hyderabad, India: Osmania University,2004.
[10] Nolasco-Hipolito C, Matsunaka T, Kobayashi G, et al. Synchronised fresh cell bioreactor system for continuous L(+) lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. Journal of Bioscience and Bioengineering, 2002, 93(3): 281-287.
[11] John R P, Nampoothiri K M, Pandey A. Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 2006, 41(4): 759-763.
[12] Kadam S R, Patil S S, Bastawde K B, et al. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochemistry, 2006, 41(1): 120-126.
[13] Tango M S, Ghaly A E. A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Applied Microbiology and Biotechnology, 2002, 58(6): 712-720.
[14] Hujanen M, Linko S, Linko Y Y, et al. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Applied Microbiology and Biotechnology, 2001, 56(1-2): 126-130.
[15] Rojan P J, Nampoothiri K M, Nair A S, et al. L(+)-Lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnology Letters, 2005, 27(21): 1685-1688.
[16] Naveena B J, Altaf M, Bhadriah K, et al. Selection of medium components by Placket Burman design for the production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresource Technology, 2005, 96(4): 485-490.
[17] Ohkouchi Y, Inoue Y. Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresource Technology, 2006, 97(13): 1554-1562.
[18] Hurok O H, Young-Jung Wee , Jong-Sun Yun , et al. Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology, 2005, 96(13): 1492-1498.
[19] Fitzpatrick J J,O’Keeffe U. Influence of whey protein hydrolyzate addition to whey permeate batch fermentations for producing lactic acid. Process Biochemistry, 2001, 37(2): 183-186.
[20] Stephanopoulos G. Metabolic engineering by genome shuffling. Nature Biotechnology, 2002, 20(7): 666-668.
[21] 邱春波, 张丽萍. L-乳酸高产菌株选育的研究.农产品加工, 2006, 70(7):27-30. Qiu C N, Zhang L P. Academic Periodical of Farm Products Processing, 2006, 70(7):27-30.
[22] 徐子钧, 李剑, 马建芳,等. L-乳酸高产菌株的选育. 食品科技, 2004,1(1): 21-23. Xu Z J, Li J, Ma J F, et al.Food Science and Technology,2004,1(1): 21-23.
[23] 乐晓洁, 王昌禄. 细菌发酵生产L-乳酸高产菌株的选育. 中国食品添加剂, 2004, 1(1): 67-69. Le X J,Wang C L, Gu X B, et al.China Food Additives, 2004, 1(1): 67-69.
[24] Shigenobu Miura, Lies Dwiarti, Tomohiro Arimura, et al. Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196. Journal of Bioscience and Bioengineering, 2004, 97(1): 19-23.
[25] Sachin R Kadam, Sudarshan S. Patil, Kulbhushan B Bastawde, et al. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochemistry, 2006, 41(1): 120-126.
[26] Dong-Mei Bai, Xue-Ming Zhao, Xin-Gang Li, et al. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochemical Engineering Journal, 2004, 18(1): 41-48.
[27] Bhowmik T, Steele J L. Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D-(-)-lactate dehydrogenase. Applied Microbiology and Biotechnology, 1994, 41(4): 432-439.
[28] Ferain T, Garmyn D, Bernard N, et al. Lactobacillus plantarum ldhL gene: overexpression and deletion. Journal of Bacteriology, 1994, 176(3): 596-601.
[29] Davidson B E, Llanos R M, Cancilla M R, et al. Current research on the genetics of Lactic acid production in Lactic acid bacteria. International Dairy Journal, 1995, 5(8): 763-784.
[30] Adachi E, Mikiko T, Sugiyama M, et al. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. Journal of Fermentation and Bioengineering, 1998, 86(3): 284-289.
[31] Porro D, Bianchi M M, Brambilla L, et al. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Applied and Environmental Microbiology, 1999, 65(9): 4211-4215.
[32] Saitoh S, Ishida N, Onishi T, et al. Genetically engineered wine yeast produces a high concentration of L-(+)-Lactic acid of extremely high optical purity. Applied and Environmental Microbiology, 2005, 71(5):2789-2792.
[33] Skory C D. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Applied Microbiology Biotechnology, 2004, 64(2): 237-242.
[34] Kenji Okano,Sakurako Kimura,Junya Narita,et al. Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Applied Microbiology Biotechnology, 2007, 75(5): 1007-1013.
[35] Lei Yu, Xiaolin Pei, Ting Lei A, et al. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 2008, 134(1-2): 154-159.
[36] Rojan P John, Dhanya Gangadharan, Madhavan Nampoothiri K. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresource Technology, 2008, 99(17): 8008-8015.
[37] Plessas S,Bosnea L,Psarianos C, et al. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. Bulgaricus and Lactobacillus helveticus. Bioresource Technology, 2008, 99(13): 5951-5955.
[38] Michelson T, Kask K, Jogi E, et al. L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme and Microbial Technology, 2006, 39(4): 861-867.
[39] 许婷婷, 柏中中, 何冰芳. 嗜热L-乳酸高产菌的选育. 化工进展, 2006, 25(10): 1178-1183. Xu T T,Bai Z Z,He B F.Chemical Industry and Engineering Progress, 2006, 25(10): 1178-1183.
[40] Aida Simisker. Thermophlic microorgnism Bacillus coagulans strain SIM-7 DSM 14043 for the production of L(+)-lactate from fermentable sugars and their mixtures. US 7183088 B2, 2007-02-27.
[41] Tanaka T, Hoshina M, Tanabe S, et al. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource Technology, 2006, 97(2): 211-217.
[42] Min-Tian Gao , Mio Kaneko, Makoto Hirata, et al. Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresource Technology, 2008, 99(9): 3659-3664.
[43] Rojan P John,Madhavan Nampoothiri K, Ashok Pandey. Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 2006, 41(4): 759-763.
[44] Sule Bulut, Murat Elibol, Dursun Ozer. Effect of different carbon sources on L(+) -lactic acid production by Rhizopus oryzae. Biochemical Engineering Journal, 2004, 21(1): 33-37.
[45] Abolghasem shahbazi, Michele R. M, Yebo Li, et al. Lactic acid production from cheese whey by immobilized bacteria. Applied Biochemistry and Biotechnology, 2005, 5(1-3): 529-540.
[46] Antti Vasala, Johanna Panula, Peter Neubauer. Efficient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. Journal of Biotechnology, 2005, 117(4): 421-431.
[47] Domke S B, Aiello-Mazzarri C, Holtzapple M T. Mixed acid fermentation of paper fines and industrial biosludge. Bioresource Technology, 2004, 91(1): 41-51.
[48] Aloia Romaní, Remedios Yez, Gil Garrote, et al. SSF production of lactic acid from cellulosic biosludges. Bioresource Technology, 2008, 99(10): 4247-4254.
[49] Susana Marquesa, José. Santosb, Francisco M Gírioa, et al. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal, 2008, 41(3): 210-216.
[50] Beatriz Gullón, Remedios Yez, José Luis Alonso, et al. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 2008, 99(2): 308-319.
[51] Zhong Xu, Qunhui Wang, Peng Wang, et al. Production of lactic acid from soybean stalk hydrolysate with Lactobacillus sake and Lactobacillus casei. Process Biochemistry, 2007, 42(1): 89-92.
[52] Bustos G N, de la Torre,Moldes A B, et al. Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 2007, 78(2): 405-412.
[53] Yumiko Ohkouchi, Yuzo Inoue. Impact of chemical components of organic wastes on L(+)-lactic acid production. Bioresource Technology, 2007, 98(3): 546-553.
[54] KiBeom Lee. A media design program for lactic acid production coupled with extraction by electrodialysis. Bioresource Technology, 2005, 96(13): 1505-1510.
[55] Min-Tian Gao, Makoto Hirata, Eiichi Toorisaka, et al. Lactic acid production with the supplementation of spent cells and fish wastes for the purpose of reducing impurities in fermentation broth. Biochemical Engineering Journal, 2007, 36(3): 276-280.
[56] Altaf M, Naveena B J, Gopal Reddy. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Bioresource Technology, 2007, 98(3): 498-503.
[57] Aicha Nancib, Nabil Nancib, Djalal Meziane-Cherif, et al. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp.rhamnosus. Bioresource Technology, 2005, 96(1): 63-67.
[58] Karin Hofvendah, Brbel Hahn-Hgerda. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 2000, 26(2-4): 87-107.
[59] Isam H Aljundia, Joanne M Belovich, Orhan Talub. Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chemical Engineering Science, 2005, 60(18): 5004-5009.
[60] 史高峰, 王国英. L(+)-乳酸发酵与分离技术研究进展. 食品科学, 2007, 28(12): 547-551. Shi G F,Wang G Y.Food Science, 2007, 28(12): 547-551.
[61] 王立梅, 齐斌. L-乳酸应用及生产技术研究进展. 食品科学, 2007, 28(10): 608-612. Wang L M,Qi B.Food Science, 2007, 28(10): 608-612.
[62] Joglekar H G, Imran Rahman, Suresh Babu, et al. Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology , 2006, 52(1): 1-17.
[63] Michiaki Matsumoto, Kenji Mochiduki, Kazuo Kondo. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. Journal of Bioscience and Bioengineering, 2004, 98(5): 344-347.
[64] Michiaki Matsumoto, Toru Takahashi, Kenji Fukushima. Synergistic extraction of lactic acid with alkylamine and tri-n-butylphosphate: effects of amines, diluents and temperature. Separation and Purification Technology, 2003, 33(1): 89-93.
[65] Kailas L Wasewara, Vishwas G Pangarkara, Bert M Heesinkb, et al. Intensication of enzymatic conversion of glucose to lactic acid by reactive extraction. Chemical Engineering Science, 2003, 58(15): 3385-3393.
[66] Yankov D,Molinier J,Albet J, et al. Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochemical Engineering Journal, 2004, 21(1): 63-71.
[67] Wang-Yu Tong, Xiang-Yang Fu, Sang-Mok Lee, et al. Purification of L(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochemical Engineering Journal, 2004, 18(2): 89-96.
[68] Cirilo Nolasco-hipolito, Toshiyuki matsunaka, Genta kobayashi, et al. Synchronized fresh cell bioreactor system for continuous L-(+)-lactic acid production using lactococcus Zactis 10-l in hydrolysed sago starch. Journal of Bioscience and Bioengineering, 2002, 93(3): 281-287.
[69] Danner H,Madzingaidzo L,Thomasser C, et al. Thermophilic production of lactic acid using integrated membrane bioreactor systems coupled with monopolar electrodialysis. Applied Microbiology Biotechnology, 2002, 59(2-3): 160-169.
[70] Sebastien Givry, Vincent Prevot, Francis Duchiron. Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World Journal Microbiology Biotechnology, 2008, 24(6): 745-752.
[71] Chaganti Subba Rao, Reddy Shetty Prakasham, Adari Bhaskar Rao, et al. Production of L (+) lactic acid by Lactobacillus delbrueckii immobilized in functionalized alginate matrices. World Journal Microbiology Biotechnology, 2008, 24(8): 1411-1415.
[72] Madzingaidzo L,Danner H,Braun R. Process development and optimisation of lactic acid purification using electrodialysis. Journal of Biotechnology, 2002, 96(3): 223-239.
[73] Gao Min-tian, Makoto Hirata, Michiteru Koide, et al. Production of L-lactic acid by electrodialysis fermentation (EDF). Process Biochemistry, 2004, 39(12): 1903-1907.
[74] Makoto Hirata, Min-tian Gao, Eiichi Toorisaka, et al. Production of lactic acid by continuous electrodialysis fermentation with a glucose concentration controller. Biochemical Engineering Journal, 2005, 25(2): 159-163.
[75] KiBeom Lee. A media design program for lactic acid production coupled with extraction by electrodialysis. Bioresource Technology, 2005, 96(13): 1505-1510.
[76] Young-jung Wee, Jong-sun Yun, Yoon Y Lee, et al. Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. Journal of Bioscience and Bioengineering, 2005, 99(2): 104-108.
[77] Joglekar H G, Imran Rahman, Suresh Babu, et al. Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 2006, 52(1): 1-17.
[78] Li Hong, Roberta Mustacchi, Christopher J Knowles, et al. An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron, 2004, 60(3): 655-661.
[79] Yi S S,Lu Y C,Luo G S. Separation and concentration of lactic acid by electro-electrodialysis. Separation and Purification Technology, 2008, 60(3): 308-314.
[80] Sun Xiaohong, Qunhui Wang, Wenchao Zhao, et al. Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method. Separation and Purification Technology, 2006, 49(1): 43-48.
[81] Zhao Wenjun, Sun Xiaohong, Wang Qunhui, et al. Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method. Biomass and Bioenergy, 2009, 33(1): 21-25.
[82] 曹新鑫, 戴星红, 刘静静. 生物高分子聚乳酸的合成综述.安徽化工, 2008, 34(1): 9-13. Cao X X, Dai X H, Liu J J. Anhui Chemical Industry, 2008, 34(1): 9-13.
[83] 赵崇峰, 封瑞江. 溶剂回流法合成聚乳酸.合成纤维, 2004, 33(6): 5-6. Zhao C F,Feng R J.Synthetic Fiber in China, 2004, 33(6): 5-6.
[84] 任鹏刚, 朱振宇, 骆光林. 一步法合成可降解聚乳酸的研究. 包装工程, 2008, 29(6): 1-3. Ren P G, Zhu Z Y, Luo G L. Packaging Engineering, 2008, 29(6): 1-3.
[85] 宇恒星, 王朝生, 黄南薰,等. 聚乳酸的聚合方法. 化工新型材料, 2002, 30(3): 16-18. Yu H X, Wang C S, Huang N X, et al.New Chemical Materials, 2002, 30(3): 16-18.
[86] 吴景梅, 曾小剑, 邰燕芳. 聚乳酸的固相合成研究. 广西轻工业, 2008, 113(4): 5-6. Wu J M, Zeng X J, Tai Y F.Guangxi Journal of Light Industry, 2008, 113(4): 5-6.
[87] 谢吉星, 杨荣杰. 亚磷酸三苯酯扩链制备高分子量聚乳酸. 高分子材料科学与工程, 2008, 24(1): 20-23. Xie J X,Yang R J.Polyer Materials Science and Engineering, 2008, 24(1): 20-23.
[88] 王军, 张健. 聚乳酸的合成及其在生物医药领域的应用进展. 化学与生物工程, 2008, 25(7): 5-9. Wang J, Zhang J. Chemistry & Bioengineering, 2008, 25(7): 5-9.
[89] Satoshi Yodaa, Daniel Brattonb, Steven M Howdleb. Direct synthesis of poly(L-lactic acid) in supercritical carbon dioxide with dicyclohexyl dimethylcarbodiimide and 4-dimethyl aminopyridine. Polymer, 2004, 45(23): 7839-7843.
[90] Chen Guang-Xin, Hun-Sik Kim, Eung-Soo Kim, et al. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. European Polymer Journal, 2006, 42(2): 468-472.
[91] Xie W, Xiaohong D P, Junli F, et al. Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J Polymer Sci Polymer Chem, 1999, 37(17): 3486 -3491.
[92] Zhang L, Shen Z, Yu C, et al. Ring-opening polymerization of D,L-lactide by rare earth 2,6-dimethylaryloxide. Polymer International, 2004, 53(8): 10-13.
[93] Mehta R, Kumar V, Bhunia H, et al. Synthesis of poly(lactic acid): A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 2005, 45 (4): 325-349.
[94] Ann-Christine Albertsson, Rajiv K Srivastava. Recent developments in enzyme-catalyzed ring-opening polymerization. Advanced Drug Delivery Reviews, 2008, 60(9): 1077-1093.
[95] Rajeev Mehta, Vineet Kumar S N Upadhyay. Mathematical modeling of the poly(lactic acid) ring-opening polymerization using stannous octoate as a catalyst. Polymer-Plastics Technology and Engineering, 2007, 46(3): 933-937.
[96] Hullathy Subban Ganapathy, Ha Soo Hwang, Yeon Tae Jeong, et al. Ring-opening polymerization of L-lactide in supercritical carbon dioxide using PDMS based stabilizers. European Polymer Journal, 2007, 43(1): 119-126.
[97] 李凡, 王莎, 刘巍峰. 聚乳酸PLA生物降解的研究进展. 微生物学报, 2008, 48(2): 262-268. Li F,Wang S,Liu W F,et al.Acta Microbiologica Sinica, 2008, 48(2): 262-268.

[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[5] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[6] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[7] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[8] LIAN Jiang-ru,MA Wei-fang. Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples[J]. China Biotechnology, 2021, 41(2/3): 107-115.
[9] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[10] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[11] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[12] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[13] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[14] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[15] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.