Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (7): 91-98    DOI: 10.13523/j.cb.2103017
    
Research Progress of Capsular Polysaccharides in Gram-positive Bacteria
ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji()
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1440KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The capsular polysaccharide (CPS) of bacteria is an important part of bacterial biofilm. It plays an essential role in the bacterial growth and division. In the meantime, this structure is related to the cell wall morphology, bacterial resistance to the external environment and immune response. In pathogenic bacteria, capsular polysaccharides act as virulence factors, so they have been studied extensively. In gram-positive bacteria, the chemical structure, biosynthesis process and functional application of capsular polysaccharides have been paid more and more attention. In this paper, the chemical structure, synthesis pathway, function and application of CPS in gram-positive bacteria were reviewed. Firstly, the bacterial distribution, chemical composition and structural specificity of the CPS from the pathogenic and non-pathogenic strains were discussed. The discussion focused on three representative Gram-positive pathogenic and non-pathogenic strains: Streptococcus pneumonia, Staphylococcus aureus, and Lactococcus lactis. Next, three main ways of the capsular polysaccharides biosynthesis in Gram-positive bacteria were reviewed: Wzx/Wzy-dependent pathway, ABC transporter pathway and synthase dependent pathway. The synthesis process and related genes of the corresponding polysaccharides were explained with examples. The physiological functions of the capsular and surface polysaccharides in gram-positive bacteria were introduced, such as barrier protection, intercellular adhesion, and participation in the immune response of host cells. In combination with the biological functions of CPS, the research progress of main applications was summarized, such as the construction of high tolerance engineering strains and the development of vaccines. Due to the differences in the characteristics of capsular polysaccharides, their chemical structure and synthesis regulation are still not clear. Finally, combined with the broad prospects in pharmaceutical research and industrial production, the prospects and suggestions are provided for the future research of bacterial capsular polysaccharides.



Key wordsCapsular polysaccharides      Gram-positive bacteria      Structure and synthesis      Immunity     
Received: 10 March 2021      Published: 03 August 2021
ZTFLH:  Q819  
Corresponding Authors: Hong-ji ZHU     E-mail: zhj@tju.edu.cn
Cite this article:

ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria. China Biotechnology, 2021, 41(7): 91-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103017     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I7/91

Fig.1 The chemical structure of CPS serotype 19 in S. pneumonia
Fig.2 The chemical structure of CPS serotype 7F in S. pneumonia
类型 荚膜多糖化学结构(部分结构) 参考文献
CP1 →4)-α-D-GalNAcA-(1→4)-α-D-GalNAcA-(1→3)-α-D-FucNAc-(1→ [19]
CP2 GlcNAcA β(1→4)-2-(N-acetylalanyl)amino-2-deoxy-D-GlcA [19]
CP4 ManNAcA-(1→3)-FucNAc [19]
CP5 →4)-β-D-ManNAcA-(1→4)-α-L-FucNAc(3OAc)-(1→3)-β-D-FucNAc-(1→ [22]
CP8 →3)-β-D-ManNAcA (4OAc)-(1→3)-α-L-FucNAc-(1→3)-α-D-FucNAc-(1→ [22]
Table 1 The chemical structure of CP in S. aureus
Fig.3 The chemical structure of polysaccharide pellicle in L. lactis
Fig.4 Representation of CPS serotype 9A synthesis in S. pneumonia (Wzx/Wzy-dependent pathway)
Fig.5 Representation of rhamnan synthesis in L. lactis (ABC-transpoter pathway)
[1]   Chapot-Chartier M P, Vinogradov E, Sadovskaya I, et al. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. Journal of Biological Chemistry, 2010, 285(14):10464-10471.
doi: 10.1074/jbc.M109.082958 pmid: 20106971
[2]   Badel S, Bernardi T, Michaud P. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 2011, 29(1):54-66.
doi: 10.1016/j.biotechadv.2010.08.011 pmid: 20807563
[3]   Nizet V. Accentuate the (Gram) positive. Journal of Molecular Medicine, 2010, 88(2):93-95.
doi: 10.1007/s00109-010-0598-1
[4]   Ovodov Y S. Capsular antigens of bacteria. Capsular antigens as the basis of vaccines against pathogenic bacteria. Biochemistry (Moscow), 2006, 71(9):955-961.
doi: 10.1134/S0006297906090021
[5]   Chaudhury A, Mukherjee M M, Ghosh R. Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A. Beilstein Journal of Organic Chemistry, 2018, 14:1095-1102.
doi: 10.3762/bjoc.14.95 pmid: 29977381
[6]   Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. Journal of Clinical Microbiology, 1995, 33(10):2759-2762.
pmid: 8567920
[7]   Wu D L, Ji S Y, Hu T. Development of pneumococcal polysaccharide conjugate vaccine with long spacer arm. Vaccine, 2013, 31(48):5623-5626.
doi: 10.1016/j.vaccine.2013.09.065
[8]   Seeberger P H, Pereira C L, Govindan S. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide. Beilstein Journal of Organic Chemistry, 2017, 13:164-173.
doi: 10.3762/bjoc.13.19 pmid: 28228857
[9]   Pereira C L, Geissner A, Anish C, et al. Chemical synthesis elucidates the immunological importance of a pyruvate modification in the capsular polysaccharide of Streptococcus pneumoniae serotype 4. Angewandte Chemie (International Ed in English), 2015, 54(34):10016-10019.
doi: 10.1002/anie.201504847
[10]   Kuttel M M, Jackson G E, Mafata M, et al. Capsular polysaccharide conformations in pneumococcal serotypes 19F and 19A. Carbohydrate Research, 2015, 406:27-33.
doi: 10.1016/j.carres.2014.12.013
[11]   Goyette-Desjardins G, Vinogradov E, Okura M, et al. Structure determination of Streptococcus suis serotypes 7 and 8 capsular polysaccharides and assignment of functions of the cps locus genes involved in their biosynthesis. Carbohydrate Research, 2019, 473:36-45.
doi: S0008-6215(18)30612-8 pmid: 30605786
[12]   Rajagopal M, Walker S. Envelope structures of gram-positive bacteria. Current Topics in Microbiology and Immunology. Cham: Springer International Publishing, 2015: 1-44.
[13]   Si A, Misra A K. Concise synthesis of the phosphoglycerylated tetrasaccharide repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 11 A. ChemistrySelect, 2017, 2(35):11771-11774.
doi: 10.1002/slct.201702500
[14]   Ménová P, Sella M, Sellrie K, et al. Identification of the minimal glycotope of Streptococcus pneumoniae 7F capsular polysaccharide using synthetic oligosaccharides. Chemistry-A European Journal, 2018, 24(16):4181-4187.
doi: 10.1002/chem.201705379 pmid: 29333751
[15]   Cho Y S, Lee M K, Hwang S H. Toxin gene profiles, genetic diversity, antimicrobial resistance, and coagulase type of Staphylococcus aureus from cream-filled bakery products. Food Science & Nutrition, 2019, 7(5):1727-1734.
[16]   林本夫, 张乃生, 原丽红. 金黄色葡萄球菌荚膜多糖的研究进展. 动物医学进展, 2005, 26(3):44-46.
[16]   Lin B F, Zhang N S, Yuan L H. The progress of the capsular polysaccharide of Staphylococcus aureus. Progress in Veterinary Medicine, 2005, 26(3):44-46.
[17]   潘志忠, 魏东, 藏丽, 等. 金黄色葡萄球菌荚膜多糖研究进展. 微生物学杂志, 2006, 26(6):93-96.
[17]   Pan Z Z, Wei D, Zang L, et al. Advance in capsular polysaccharide of Staphylococcus aureus. Journal of Microbiology, 2006, 26(6):93-96.
[18]   Luong T T, Lee C Y. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infection and Immunity, 2002, 70(7):3389-3395.
doi: 10.1128/IAI.70.7.3389-3395.2002
[19]   Visansirikul S, Kolodziej S A, Demchenko A V. Staphylococcus aureus capsular polysaccharides: a structural and synthetic perspective. Organic & Biomolecular Chemistry, 2020, 18(5):783-798.
[20]   Gogoi-Tiwari J, Babra Waryah C, Sunagar R, et al. Typing of Staphylococcus aureus isolated from bovine mastitis cases in Australia and India. Australian Veterinary Journal, 2015, 93(8):278-282.
doi: 10.1111/avj.12349 pmid: 26220320
[21]   Visansirikul S, Kolodziej S A, Demchenko A V. Synthesis of oligosaccharide fragments of capsular polysaccharide Staphylococcus aureus type 8. Journal of Carbohydrate Chemistry, 2020, 39(7):301-333.
doi: 10.1080/07328303.2020.1821042
[22]   Jones C. Revised structures for the capsular polysaccharides from Staphylococcus aureus types 5 and 8, components of novel glycoconjugate vaccines. Carbohydrate Research, 2005, 340(6):1097-1106.
doi: 10.1016/j.carres.2005.02.001
[23]   Park H M, Yoo H S, Oh T H, et al. Immunogenicity of alpha-toxin, capsular polysaccharide (CPS) and recombinant fibronectin-binding protein (r-FnBP) of Staphylococcus aureus in rabbit. The Journal of Veterinary Medical Science, 1999, 61(9):995-1000.
doi: 10.1292/jvms.61.995
[24]   Tzianabos A O, Wang J Y, Lee J C. Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. PNAS, 2001, 98(16):9365-9370.
pmid: 11470905
[25]   Andre G, Kulakauskas S, Chapot-Chartier M P, et al. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nature Communications, 2010, 1:27.
doi: 10.1038/ncomms1027
[26]   Mahony J, Kot W, Murphy J, et al. Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Applied and Environmental Microbiology, 2013, 79(14):4385-4392.
doi: 10.1128/AEM.00653-13
[27]   Mahony J, Randazzo W, Neve H, et al. Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Applied and Environmental Microbiology, 2015, 81(10):3299-3305.
doi: 10.1128/AEM.00143-15
[28]   Ainsworth S, Sadovskaya I, Vinogradov E, et al. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio, 2014, 5(3):e00880-e00814.
[29]   Mahony J, Frantzen C, Vinogradov E, et al. The CWPS Rubik’s cube: linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains. Molecular Microbiology, 2020, 114(4):582-596.
doi: 10.1111/mmi.v114.4
[30]   Sadovskaya I, Vinogradov E, Courtin P, et al. Another brick in the wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. MBio, 2017, 8(5):e01303-e01317.
[31]   Yother J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annual Review of Microbiology, 2011, 65:563-581.
doi: 10.1146/annurev.micro.62.081307.162944 pmid: 21721938
[32]   Islam S T, Lam J S. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Canadian Journal of Microbiology, 2014, 60(11):697-716.
doi: 10.1139/cjm-2014-0595
[33]   Clarke B R, Cuthbertson L, Whitfield C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. Journal of Biological Chemistry, 2004, 279(34):35709-35718.
doi: 10.1074/jbc.M404738200
[34]   Kawai Y, Marles-Wright J, Cleverley R M, et al. A widespread family of bacterial cell wall assembly proteins. The EMBO Journal, 2011, 30(24):4931-4941.
doi: 10.1038/emboj.2011.358
[35]   Llull D, García E, López R. Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in pneumococcus and other gram-positive species. Journal of Biological Chemistry, 2001, 276(24):21053-21061.
pmid: 11264282
[36]   Mavroidi A, Aanensen D M, Godoy D, et al. Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. Journal of Bacteriology, 2007, 189(21):7841-7855.
doi: 10.1128/JB.00836-07
[37]   Bentley S D, Aanensen D M, Mavroidi A, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genetics, 2006, 2(3):e31.
doi: 10.1371/journal.pgen.0020031
[38]   Larson T R, Yother J. Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β-D-N-acetylglucosamine. PNAS, 2017, 114(22):5695-5700.
doi: 10.1073/pnas.1620431114
[39]   Ye W J, Zhang J H, Shu Z C, et al. Pneumococcal LytR protein is required for the surface attachment of both capsular polysaccharide and teichoic acids: essential for pneumococcal virulence. Frontiers in Microbiology, 2018, 9:1199.
doi: 10.3389/fmicb.2018.01199
[40]   Cartee R T, Forsee W T, Yother J. Initiation and synthesis of the Streptococcus pneumoniae type 3 capsule on a phosphatidylglycerol membrane anchor. Journal of Bacteriology, 2005, 187(13):4470-4479.
doi: 10.1128/JB.187.13.4470-4479.2005
[41]   Reeves P R, Hobbs M, Valvano M A, et al. Bacterial polysaccharide synthesis and gene nomenclature. Trends in Microbiology, 1996, 4(12):495-503.
pmid: 9004408
[42]   Schaefer K, Matano L M, Qiao Y, et al. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nature Chemical Biology, 2017, 13(4):396-401.
doi: 10.1038/nchembio.2302 pmid: 28166208
[43]   Chan Y G Y, Kim H K, Schneewind O, et al. The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-psr (LCP) family of enzymes. Journal of Biological Chemistry, 2014, 289(22):15680-15690.
doi: 10.1074/jbc.M114.567669
[44]   Liszewski Zilla M, Chan Y G Y, Lunderberg J M, et al. LytR-CpsA-psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly. Journal of Bacteriology, 2015, 197(2):343-353.
doi: 10.1128/JB.02364-14 pmid: 25384480
[45]   Looijesteijn P J, Trapet L, de Vries E, et al. Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology, 2001, 64(1-2):71-80.
[46]   Theodorou I, Courtin P, Sadovskaya I, et al. Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. Journal of Biological Chemistry, 2020, 295(16):5519-5532.
doi: 10.1074/jbc.RA119.010844 pmid: 32169901
[47]   Ericsson D J, Standish A, Kobe B, et al. Wzy-dependent bacterial capsules as potential drug targets. Current Drug Targets, 2012, 13(11):1421-1431.
pmid: 22664095
[48]   Bozue J A, Parthasarathy N, Phillips L R, et al. Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microbial Pathogenesis, 2005, 38(1):1-12.
pmid: 15652290
[49]   Qu H, Xin Y, Dong X, et al. An rmlA gene encoding d-glucose-1-phosphate thymidylyltransferase is essential for mycobacterial growth. FEMS Microbiology Letters, 2007, 275(2):237-243.
doi: 10.1111/fml.2007.275.issue-2
[50]   Meng J P, Yin Y B, Zhang X M, et al. Identification of Streptococcus pneumoniae genes specifically induced in mouse lung tissues. Canadian Journal of Microbiology, 2008, 54(1):58-65.
doi: 10.1139/W07-117
[51]   Cramton S E, Ulrich M, Götz F, et al. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infection and Immunity, 2001, 69(6):4079-4085.
pmid: 11349079
[52]   Alp G, Aslim B, Suludere Z, et al. The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiology and Immunology, 2010, 54(11):658-665.
doi: 10.1111/mim.2010.54.issue-11
[53]   Tahoun A, Masutani H, El-Sharkawy H, et al. Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages. Gut Pathogens, 2017, 9:27.
doi: 10.1186/s13099-017-0177-x pmid: 28469711
[54]   Dertli E, Mayer M J, Narbad A. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiology, 2015, 15:8.
doi: 10.1186/s12866-015-0347-2 pmid: 25648083
[55]   王楷宬, 陆承平, 范伟兴. 细菌荚膜多糖. 微生物学报, 2011, 51(12):1578-1584.
[55]   Wang K C, Lu C P, Fan W X. Bacterial capsular polysaccharide-a review. Acta Microbiologica Sinica, 2011, 51(12):1578-1584.
[56]   李天一, 王英锋, 张玫. 细菌荚膜多糖的研究进展. 中国人兽共患病学报, 2015, 31(12):1171-1176.
[56]   Li T Y, Wang Y F, Zhang M. Research progress on bacterial capsular polysaccharide. Chinese Journal of Zoonoses, 2015, 31(12):1171-1176.
[57]   Kadirvelraj R, Gonzalez-Outeirino J, Foley B L, et al. Understanding the bacterial polysaccharide antigenicity of Streptococcus agalactiae versus Streptococcus pneumoniae. PNAS, 2006, 103(21):8149-8154.
pmid: 16705032
[58]   张哲, 李新圃, 杨峰, 等. 荚膜多糖及其疫苗研究进展. 动物医学进展, 2015, 36(11):83-87.
[58]   Zhang Z, Li X P, Yang F, et al. Progress on capsular polysaccharides and their vaccines. Progress in Veterinary Medicine, 2015, 36(11):83-87.
[59]   任珍芸, 刘倩, 张轶, 等. 13个血清型肺炎球菌荚膜多糖稳定性考察. 中国生物制品学杂志, 2018, 31(10):1075-1083.
[59]   Ren Z Y, Liu Q, Zhang Y, et al. Stability of pneumococcal polysaccharide of 13 serotypes. Chinese Journal of Biologicals, 2018, 31(10):1075-1083.
[1] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.
[2] Ding-hao DENG,Yong-le XIAO,Jian-xue TANG,Xing YANG,Rong GAO. Eukaryotic Expression of Porcine IL-17 Gene and its Bioactivity[J]. China Biotechnology, 2018, 38(8): 10-18.
[3] Xiao-fang WU,Jia-heng LIU,Hui XIONG,Jian-jun QIAO,Hong-ji ZHU. Research Progress of Lipoprotein in Gram-positive Bacteria[J]. China Biotechnology, 2018, 38(6): 86-94.
[4] WANG Meng, SUN Wen-hui, JI Fang-ling, PU Zhong-ji, LI Yin-sheng, BAO Yong-ming. Recombinant Expression of Antigen Epitope Genes of Human Cytomegalovirus and Immunogenicity Detection of the Fusion Protein[J]. China Biotechnology, 2017, 37(7): 27-33.
[5] LIU Di, YAN Ting, HE Xiu-juan, ZHENG Wen-yun, MA Xing-yuan. Preparation and Preliminary Evaluation of Triple Oral Vaccine Against Bacterial Diarrhea[J]. China Biotechnology, 2017, 37(7): 18-26.
[6] CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors[J]. China Biotechnology, 2016, 36(5): 112-117.
[7] ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun. Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria[J]. China Biotechnology, 2016, 36(10): 106-114.
[8] LIANG Ying, LIU Jin-ying, FAN Xiao-hui, SONG De-zhi, XIAO Qing, YIN Jun, FENG An-lin, YANG Li, ZHOU Dan-ni, LAI Zhen-pin. The Prokaryotic Expression and Identification of HN Gene Fragment of Newcastle Disease Virus Strain 7793[J]. China Biotechnology, 2013, 33(8): 32-37.
[9] HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong. Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors[J]. China Biotechnology, 2012, 32(12): 86-92.
[10] MAN Chao-lai, LI Feng, TANG Gao-xia, ZHEN Xin, MI Xiao-ju. Research Progress of Akirin Gene[J]. China Biotechnology, 2012, 32(03): 106-109.
[11] WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans[J]. China Biotechnology, 2011, 31(7): 121-125.
[12] JIA Qin-mei, WU Jin-yuan, YI Shan, ZHANG Guang-ming, GAO Yan, YANG Xing, ZHAO Xiao-nan, SUN Mao-sheng, LI Hong-jun. Preparation and Immunogenicity of a Scalable Inactivated Vaccine, Strain ZTR-5 in Mice[J]. China Biotechnology, 2011, 31(11): 6-10.
[13] SUN Ying-jun, ZHANG Yan, WU Qiong, ZHENG Hai-xue, ZHANG Zhi-dong. The Progress of Study on Innate Immunity Led to the Design and Development of More Specific and Focused Adjuvants[J]. China Biotechnology, 2011, 31(03): 87-90.
[14] ZHANG Hai-Yan, YANG Hong-Jun, WANG Chang-Fa, HE Hong-Ban, ZHONG Ji-Feng, YANG Shao-Hua, MA Wei-Meng. Evaluation of the Immunity Effectiveness on the Engineered Subunit Vaccine of Staphylococcus aureus α-Hemolysin[J]. China Biotechnology, 2009, 29(11): 17-22.
[15] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.