Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 107-115    DOI: 10.13523/j.cb.2009011
    
Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples
LIAN Jiang-ru,MA Wei-fang()
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083,China
Download: HTML   PDF(6817KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As biological macromolecules to guide biological development and life function activities, DNA can also be used to construct nanomaterials. DNA hydrogels can be prepared with both DNA biological function and hydrogel characteristics and applied to the analysis and detection of environmental samples. Polymerase chain reaction, hybridization chain reaction, roll-ring amplification and DNA super-analysis self-assembly were compared and analyzed according to the method of preparing long DNA hydrogel chains. It is concluded that the single technology of DNA amplification cannot meet the experimental requirements, and the appropriate technology should be selected according to the experimental conditions. The synthesis principle and process of physical hydrogels and chemical hydrogels are introduced. Chemical gels are mainly based on DNA ligase or DNA terminal synthesis. The physical glue formation is mainly based on van der Waals force or hydrogen bond synthesis. Since physical hydrogels and chemical hydrogels are not sensitive to environmental changes, the synthesis process needs to be improved. By comparing and analyzing the characteristics of modification methods, the synthetic DNA hydrogel can respond quickly to environmental changes and be applied to environmental sample detection. In combination with the denaturation response characteristics of environmental sample concentration detection, the technical points and detection performance of colorimetric, fluorescence and electrochemical methods are analyzed. Colorimetric method uses color developing agent as a indicator signal. When the structure of hydrogel changes, the sample can be detected according to the color of the developing agent. Fluorescence analysis uses the color and intensity of fluorescence to detect the sample qualitatively or quantitatively. Electrochemical analysis uses electrical signals such as resistance and current to detect samples quickly. Compared with the large instrument analysis method, these methods have the characteristics of low detection limit, wide detection range, fast detection time and low sample cost, etc. It is a convenient and fast method with a wide application prospect. Finally, the performance and economy of detection are evaluated, and its application prospect is summarized and prospected.



Key wordsDNA hydrogel      Synthesis and modification      Rapid sample testing     
Received: 05 September 2020      Published: 08 April 2021
ZTFLH:  Q819  
Corresponding Authors: Wei-fang MA     E-mail: mpeggy@163.com
Cite this article:

LIAN Jiang-ru,MA Wei-fang. Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples. China Biotechnology, 2021, 41(2/3): 107-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009011     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/107

Fig.1 DNA hydrogel before and after cutting
Fig.2 DNA hydrogel colorimetric sensor
Fig.3 Monomer structure of DNA hydrogel
Fig.4 Hydrogels formed in physical form
检测介质 方法 检测物质 检出限 参考文献
水样 高灵敏纳米生物传感技术 铅离子 0.61nmol/L [31]
水样复杂样品 DNA水凝胶集成的微流控纸芯片 铅离子 200nmol/L [32]
水样 原子荧光法 总铅 70ng/L [33]
Table 1 Detection of Pb using different methods
检测介质 汞离子添加浓度(nmol/L) DAN水凝胶检测结果(nmol/L) 原子荧光法检测结果(nmol/L)
河水 0 0 0.049±0.01
河水 10 10.34±0.37 10.10±0.09
自来水 0 0 0.022±0.00
自来水 10 9.89±0.17 10.02±0.02
饮用水 0 0 0
饮用水 10 10.27±0.19 9.95±0.02
Table 2 Detection of Hg2+ in DNA hydrogel and AFS
检测介质 方法 检测物质 检出限 检出时间 参考文献
水样 高灵敏纳米生物传感技术 汞离子 1.54nmol/L - [28]
饮用水样 DNA水凝胶 铜离子 10μmol/L 1.5h [26]
样品溶液 DNA杂合水凝胶 金属离子 1nmol/L以下 - [34]
水样复杂样品 DNA水凝胶集成的微流控纸芯片 可卡因、腺苷 50μmol/L
100μmol/L
6min [32]
废水溶液 石墨烯水凝胶检测 土霉素 50μg/L 15min [35]
水样 DNA水凝胶比色法 黄曲霉毒素B1 0.25μmol/L - [36]
水样 DNA水凝胶比色法 可卡因 1nmol/L - [37]
水样 DNA水凝胶微流控芯片 铀酰离子 100nmol/L - [38]
Table 3 Comparison of different hydrogel detection methods
[1]   Wang D, Cui J H, Gan M Z, et al. Transformation of biomass DNA into biodegradable materials from gels to plastics for reducing petrochemical consumption. Journal of the American Chemical Society, 2020,142(22):10114-10124.
pmid: 32392407
[2]   Ullah F, Othman M B H, Javed F, et al. Classification, processing and application of hydrogels: a review. Materials Science and Engineering: C, 2015,57:414-433.
[3]   Shahbazi M A, Bauleth-Ramos T, Santos H A. DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Advanced Therapeutics, 2018,1(4):1800042.
[4]   Zhou L P, Jiao X Y, Liu S Y, et al. Functional DNA-based hydrogel intelligent materials for biomedical applications. Journal of Materials Chemistry B, 2020,8(10):1991-2009.
pmid: 32073097
[5]   Xu N, Ma N N, Yang X T, et al. Preparation of intelligent DNA hydrogel and its applications in biosensing. European Polymer Journal, 2020,137:109951.
[6]   Wang D, Hu Y, Liu P F, et al. Bioresponsive DNA hydrogels: Beyond the conventional stimuli responsiveness. Accounts of Chemical Research, 2017,50(4):733-739.
doi: 10.1021/acs.accounts.6b00581 pmid: 28186723
[7]   Wei B, Cheng I, Luo K Q, et al. Capture and release of protein by a reversible DNA-induced Sol-gel transition system. Angewandte Chemie(International Ed in English), 2008,47(2):331-333.
[8]   Li C, Faulkner‐Jones A, Dun A R, et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angewandte Chemie (International Ed in English), 2015,54(13):3957-3961.
[9]   Hao L L, Wang W, Shen X Q, et al. A Fluorescent DNA hydrogel aptasensor based on the self-assembly of rolling circle amplification products for sensitive detection of ochratoxin A. Journal of Agricultural and Food Chemistry, 2020,68(1):369-375.
pmid: 31829586
[10]   宋萍, 叶德楷, 宋世平, 等. DNA水凝胶的制备及生物应用. 化学进展, 2016,28(5):628-636.
[10]   Song P, Ye D K, Song S P, et al. Preparation and biological applications of DNA hydrogel. Progress in Chemical, 2016,28(5):628-636.
[11]   潘浣钰, 李丰, 何建雄. 免疫层析技术及其在环境小分子污染物快速检测中的研究进展. 广东化工, 2019,46(6):129-131.
[11]   Pan H Y, Li F, He J X. Research advances of immunochromatography technology and application in environmental small molecular pollutants determination. Guangdong Chemical Industry, 2019,46(6):129-131.
[12]   Wang H, Wang H H, Li Y S, et al. Capillarity self-driven DNA hydrogel sensor for visual quantification of microRNA. Sensors and Actuators B: Chemical, 2020,313:128036.
[13]   陈庆山, 刘春燕, 刘迎雪, 等. 核酸体外扩增技术. 中国生物工程杂志, 2004,24(5):10-14.
[13]   Chen Q S, Liu C Y, Liu Y X, et al. Progress of nucleic acid amplification technologies. Progress in Biotechnology, 2004,24(5):10-14.
[14]   杨婵, 王瑞嘉, 何婧琳, 等. 杂交链式反应在生物传感探针设计方面的应用. 化学传感器, 2017,37(3):8-16.
[14]   Yang C, Wang R J, He J L, et al. Application of hybrid chain reaction in biosensing probe design. Chemical sensor, 2017,37(3):8-16.
[15]   Ali M M, Li F, Zhang Z Q, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev, 2014,43(10):3324-3341.
pmid: 24643375
[16]   Liu N N, Huang F J, Lou X D, et al. DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Science China Chemistry, 2017,60(3):311-318.
[17]   Um S H, Lee J B, Park N, et al. Enzyme-catalysed assembly of DNA hydrogel. Nature Materials, 2006,5(10):797-801.
doi: 10.1038/nmat1741 pmid: 16998469
[18]   Lee J B, Peng S, Yang D, et al. A mechanical metamaterial made from a DNA hydrogel. Nature Nanotechnology, 2012,7(12):816-820.
doi: 10.1038/nnano.2012.211 pmid: 23202472
[19]   Cheng E J, Xing Y Z, Chen P, et al. A pH-triggered, fast-responding DNA hydrogel. Angewandte Chemie International Edition, 2009,48(41):7660-7663.
[20]   Xing Y Z, Cheng E J, Yang Y, et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Advanced Materials (Deerfield Beach, Fla), 2011,23(9):1117-1121.
[21]   Zhang L, Lei J P, Liu L, et al. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Analytical Chemistry, 2013,85(22):11077-11082.
doi: 10.1021/ac4027725 pmid: 24138007
[22]   Peng L, You M X, Yuan Q, et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. Journal of the American Chemical Society, 2012,134(29):12302-12307.
[23]   Zhu Z, Guan Z C, Jia S S, et al. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angewandte Chemie, 2014,126(46):12711-12715.
[24]   Mao Y, Li J X, Yan J M, et al. A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods. Chemical Communications, 2017,53(47):6375-6378.
pmid: 28555677
[25]   Lee H Y, Jeong H, Jung I Y, et al. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels. Advanced Materials, 2015,27(23):3513-3517.
doi: 10.1002/adma.201500414 pmid: 25946166
[26]   Lin H X, Zou Y, Huang Y S, et al. DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chemical Communications (Cambridge, England), 2011,47(33):9312-9314.
[27]   Lee H, Shapiro S J, Chapin S C, et al. Encoded hydrogel microparticles for sensitive and multiplex microRNA detection directly from raw cell lysates. Analytical Chemistry, 2016,88(6):3075-3081.
pmid: 26863201
[28]   Dave N, Chan M Y, Huang P J J , et al. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. Journal of the American Chemical Society, 2010,132(36):12668-12673.
pmid: 20726570
[29]   Kahn J S, Trifonov A, Cecconello A, et al. Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano letters, 2015,15(11):7773-7778.
pmid: 26488684
[30]   Nguyen K V, Holade Y, Minteer S D. DNA redox hydrogels: Improving mediated enzymatic bioelectrocatalysis. ACS Catalysis, 2016,6(4):2603-2607.
[31]   吕笑笑. 高灵敏纳米生物传感体系构建及在环境检测中的应用. 湖南: 湖南大学, 2015.
[31]   Lv X X. Fabrication of high sensitive nano-biosensiors for environmental monitoring. Hunan: Hunan University, 2015.
[32]   魏晓峰. 功能化DNA生物传感器的研究和应用. 福州市: 福州大学, 2016.
[32]   Wei X F. Research and application of functional DNA biosensor. Fuzhou: Fuzhou University, 2016.
[33]   孙仓. 地表水总铅的原子荧光法测定条件的优化研究. 环境研究与监测, 2020,33(1):7-11.
[33]   Sun C. Optimization of determination conditions of total lead in surface water using atomic fluorescence method. Environmental Research and Monitoring, 2020,33(1):7-11.
[34]   马琪, 张红利, 蒋刚锋, 等. 基于DNA杂合水凝胶和染料的SNP可视化荧光检测// 中国化学会第30届学术年会摘要集-第二十八分会. 大连: 化学生物学, 2016: 92.
[34]   Ma Q, Zhang H L, Jiang G F, et al. Visual fluorescence detection of SNP based on DNA hybrid hydrogel and dye// Abstract Collection of the 30th Annual Conference of the Chinese Chemical Society-28th Session. Dalian: Biochemical, 2016: 92.
[35]   杜磊. 基于石墨烯适配子自组装水凝胶的土霉素可视化传感检测方法. 大连:大连理工大学, 2015.
[35]   Du L. A visual sensing strategy based on self-assemble graphene aptamer hydrogel for oxytetracycline determination. Dalian: Dalian University of Technology, 2015.
[36]   马艳丽, 毛瑜, 黄迪, 等. 基于核酸适配体交联水凝胶的黄曲霉毒素B1可视化检测新平台. [2016-05-13]. http://www.paper.edu.cn/releasepaper/content/201605-307.
[36]   Ma Y L, Mao Y, Huang D, et al. A new visual detection platform for Aflatoxin B1 based on nucleic acid aptamer crosslinked hydrogel.[2016-05-13]. http://www.paper.edu.cn/releasepaper/content/201605-307.
[37]   吴崔晨, 朱志, 邹远, 等. 基于核酸适体自组装的水凝胶可视化检测平台// 中国化学会第27届学术年会第16分会场摘要集. 厦门: 中国化学会, 2010: 123.
[37]   Wu C C, Zhu Z, Zou Y, et al. Hydrogel visual detection platform based on self-assembly of nucleic acid aptamer// Abstracts of the 16th Session of the 27th Annual Conference of the Chinese Chemical Society. Xiamen: Chinese Chemical Society, 2010: 123.
[38]   黄艺顺, 方璐婷, 朱志 . 等. 铀响应的DNA水凝胶设计合成及结合微流控芯片的距离可视化检测应用. [2016-04-15]. http://www.paper.edu.cn/releasepaper/content/201604-181.
[38]   Huang Y S, Fang L T, Zhu Z, et al. Design and synthesis of uranium-responsive DNA hydrogel and the application of distance visual detection combined with microfluidic chip. [2016-04-15]. http://www.paper.edu.cn/releasepaper/content/201604-181.
[39]   Sohn H, Minion J, Albert H, et al. TB diagnostic tests: how do we figure out their costs? Expert Review of Anti-infective Therapy, 2009,7(6):723-733.
doi: 10.1586/eri.09.52 pmid: 19681700
[1] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.