Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 105-113    DOI: 10.13523/j.cb.2101019
    
Research Progress of Itaconic Acid Fermentation
GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin(),SONG An-dong
College of Life Sciences, Henan Agriculture University, Zhengzhou 450002, China
Download: HTML   PDF(563KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Itaconic acid, a platform chemical, can be widely applied in various industries for kinds of high value-added products. It is one of the potential alternatives to the traditional petroleum-based material, which has an important position and application prospect in industrial production. At present, itaconic acid is mainly produced by submerged fermentation by Aspergillus terreus. A number of parameters have significant influence on the yield of itaconic acid, such as carbon source, nitrogen source, phosphate, metal ion, dissolved oxygen, pH, and temperature. The high cost of raw material is a crucial factor which impedes the expansion and development of the itaconic acid market in industrial production. Lignocellulose is a widely available and a promising low-cost substrate. The research of lignocellulosic hydrolysate as a substitute carbon source to produce itaconic acid is expected to reduce the production cost, which is of great significance to promote the development and application of itaconic acid.



Key wordsItaconic acid      Aspergillus terreus      Fermentation      Lignocellulose     
Received: 15 January 2021      Published: 01 June 2021
ZTFLH:  Q819  
Corresponding Authors: Feng-qin WANG     E-mail: w_fengqin@163.com
Cite this article:

GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation. China Biotechnology, 2021, 41(5): 105-113.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101019     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/105

Microorganism Substrate Production
/(g/L)
Yield
/(g/g)
Productivity
/[g/(L·h)]
System Ref.
A. terreus NRRL 1960 glucose 130 - - BF [2]
glucose 73.6 - - BF [25]
xylose 53.97 0.63 - BF [26]
A. terreus NRRL 1962 glucose 43.5 - 0.26 SF [27]
xylose 31.6 - 0.19
arabinose 16.7 - 0.10
A. terreus DSM 23081 glucose 92.4 0.53 - SF [28]
86.5 0.54 0.62 BF
glucose 129 0.58 1.15 BF [11]
glucose 160 0.46 0.99 BF [9]
A. terreus NRRL 1971 glucose 42.6 - - SF [29]
xylose 30.5 -
mannose 36.4 0.41 -
arabinose 25.8 - -
A. terreus CECT 20365 glucose 30.2 - - SF [30]
glycerol 26.9 - -
A. terreus MJL05 glycerol 27.6 0.44 0.192 BF [31]
U. maydis MB 215 glucose 220 0.45 0.73 BF [14]
U. vetiveriae TZ1 glycerol 34.7 0.18 0.09 SF [32]
Candidia sp. B-1 glucose 35 0.35 - SF [18]
A. niger glucose 26.2 - 0.35 BF [33]
E. coli glucose 4.34 - - BF [20]
E. coli glucose 2.27 0.77 - SF [34]
32 0.68 - BF
Yarrowia lipolytica glucose 4.6 0.058 0.045 BF [23]
Corynebacterium glutamicum glucose 7.8 0.4 0.002 1 SF [35]
Table 1 The itaconic acid yields in some strains has been reported
Fig.1 Simplified itaconic acid metabolic pathways of Ustilago maydis (a) and Aspergillus terreus (b) EMP: Embden-Meyerhof-Parnas; mtt: Mitochondrial TCA transporter; Adi1: Aconitate-Δ-isomerase; Tad1: trans-aconitate decarboxylase; Itp1: Itaconate transporter protein; CAD: cis-aconitate decarboxylase; mfs: Major facilitator superfamily protein
[1]   Okabe M, Lies D, Kanamasa S, et al. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Applied Microbiology and Biotechnology, 2009,84(4):597-606.
doi: 10.1007/s00253-009-2132-3
[2]   Karaffa L, Díaz R, Papp B, et al. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Applied Microbiology and Biotechnology, 2015,99(19):7937-7944.
doi: 10.1007/s00253-015-6735-6
[3]   Choi S, Song C W, Shin J H, et al. Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 2015,28:223-239.
doi: 10.1016/j.ymben.2014.12.007 pmid: 25576747
[4]   Sethy B, Hsieh C F, Lin T J, et al. Design, synthesis, and biological evaluation of itaconic acid derivatives as potential anti-influenza agents. Journal of Medicinal Chemistry, 2019,62(5):2390-2403.
doi: 10.1021/acs.jmedchem.8b01683
[5]   Weiss J M, Davies L C, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. The Journal of Clinical Investigation, 2018,128(9):3794-3805.
doi: 10.1172/JCI99169
[6]   Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(19):7820-7825.
[7]   Geilen F, Engendahl B, Harwardt A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angewandte Chemie International Edition, 2010,49(32):5510-5514.
doi: 10.1002/anie.201002060
[8]   Du C, Ahmed A. Fermentative itaconic acid production. Journal of Biodiversity, Bioprospecting and Development, 2014,1(2):1000119.
[9]   Krull S, Hevekerl A, Kuenz A, et al. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Applied Microbiology and Biotechnology, 2017,101(10):4063-4072.
doi: 10.1007/s00253-017-8192-x
[10]   Bafana R, Pandey R A. New approaches for itaconic acid production: bottlenecks and possible remedies. Critical Reviews in Biotechnology, 2018,38(1):68-82.
doi: 10.1080/07388551.2017.1312268 pmid: 28425297
[11]   Hevekerl A, Kuenz A, Vorlop K D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 2014,98(24):10005-10012.
doi: 10.1007/s00253-014-6047-2 pmid: 25213913
[12]   Saha B C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. Journal of Industrial Microbiology & Biotechnology, 2017,44(2):303-315.
[13]   Geiser E, Wiebach V, Wierckx N, et al. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biology and Biotechnology, 2014,1(1):1-10.
doi: 10.1186/s40694-014-0001-z
[14]   Hosseinpour Tehrani H, Becker J, Bator I, et al. Integrated strain- and process design enable production of 220 g L-1 itaconic acid with Ustilago maydis. Biotechnology for Biofuels, 2019,12(1):1-11.
doi: 10.1186/s13068-018-1346-y
[15]   van der Straat L, Vernooij M, Lammers M, et al. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial Cell Factories, 2014,13:11.
doi: 10.1186/1475-2859-13-11
[16]   Hossain A H, van Gerven R, Overkamp K M, et al. Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. Biotechnology for Biofuels, 2019,12:233.
doi: 10.1186/s13068-019-1577-6
[17]   Blumhoff M L, Steiger M G, Mattanovich D, et al. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metabolic Engineering, 2013,19:26-32.
doi: 10.1016/j.ymben.2013.05.003 pmid: 23727192
[18]   Tabuchi T, Sugisawa T, Ishidori T, et al. Itaconic acid fermentation by a yeast belonging to the genus Candida. Agricultural and Biological Chemistry, 1981,45(2):475-479.
[19]   Levinson W E, Kurtzman C P, Kuo T M. Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme and Microbial Technology, 2006,39(4):824-827.
doi: 10.1016/j.enzmictec.2006.01.005
[20]   Okamoto S, Chin T, Hiratsuka K, et al. Production of itaconic acid using metabolically engineered Escherichia coli. The Journal of General and Applied Microbiology, 2014,60(5):191-197.
doi: 10.2323/jgam.60.191
[21]   Tran K N T, Somasundaram S, Eom G T, et al. Efficient Itaconic acid production via protein-protein scaffold introduction between GltA, AcnA, and CadA in recombinant Escherichia coli. Biotechnology Progress, 2019,35(3):e2799.
[22]   Sun W, Vila-Santa A, Liu N, et al. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metabolic Engineering Communications, 2020,10:e00124.
doi: 10.1016/j.mec.2020.e00124
[23]   Blazeck J, Hill A, Jamoussi M, et al. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 2015,32:66-73.
doi: S1096-7176(15)00115-9 pmid: 26384571
[24]   Luo G, Fujino M, Nakano S, et al. Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10. Journal of Biotechnology, 2020,312:56-62.
doi: 10.1016/j.jbiotec.2020.03.003
[25]   Molnár Á P, Németh Z, Kolláth I S, et al. High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Applied Microbiology and Biotechnology, 2018,102(20):8799-8808.
doi: 10.1007/s00253-018-9325-6 pmid: 30141084
[26]   Kolláth I S, Molnár Á P, Soós Á, et al. Manganese deficiency is required for high itaconic acid production from D-xylose in Aspergillus terreus. Frontiers in Microbiology, 2019,10:1589.
doi: 10.3389/fmicb.2019.01589 pmid: 31338087
[27]   Saha B C, Kennedy G J, Qureshi N, et al. Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnology Progress, 2017,33(4):1059-1067.
doi: 10.1002/btpr.2485
[28]   Hevekerl A, Kuenz A, Vorlop K D. Filamentous fungi in microtiter plates:an easy way to optimize itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 2014,98(16):6983-6989.
doi: 10.1007/s00253-014-5743-2 pmid: 24737061
[29]   Saha B C, Kennedy G J. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Letters in Applied Microbiology, 2017,65(6):527-533.
doi: 10.1111/lam.12810 pmid: 28977696
[30]   Vassilev N, Medina A, Eichler-Löbermann B, et al. Animal bone char solubilization with itaconic acid produced by free and immobilized Aspergillus terreus grown on glycerol-based medium. Applied Biochemistry and Biotechnology, 2012,168(5):1311-1318.
doi: 10.1007/s12010-012-9859-5 pmid: 22956279
[31]   Juy M, Orejas J, Me L. Study of itaconic acid production by Aspergillus terrus MJL05 strain with different variable. Revista Colombiana De Biotecnología, 2010,7:187-193
[32]   Zambanini T, Hosseinpour Tehrani H, Geiser E, et al. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnology for Biofuels, 2017,10:131.
doi: 10.1186/s13068-017-0809-x
[33]   Hossain A H, Li A, Brickwedde A, et al. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microbial Cell Factories, 2016,15(1):130.
doi: 10.1186/s12934-016-0527-2
[34]   Harder B J, Bettenbrock K, Klamt S. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering, 2016,38:29-37.
doi: 10.1016/j.ymben.2016.05.008
[35]   Otten A, Brocker M, Bott M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metabolic Engineering, 2015,30:156-165.
doi: 10.1016/j.ymben.2015.06.003
[36]   Bonnarme P, Gillet B, Sepulchre A M, et al. Itaconate biosynthesis in Aspergillus terreus. Journal of Bacteriology, 1995,177(12):3573-3578.
doi: 10.1128/JB.177.12.3573-3578.1995
[37]   Steiger M G, Blumhoff M L, Mattanovich D, et al. Biochemistry of microbial itaconic acid production. Frontiers in Microbiology, 2013,4:23.
[38]   Li A, van Luijk N, ter Beek M, et al. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genetics and Biology, 2011,48(6):602-611.
doi: 10.1016/j.fgb.2011.01.013
[39]   Geiser E, Przybilla S K, Friedrich A, et al. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microbial Biotechnology, 2016,9(1):116-126.
doi: 10.1111/1751-7915.12329 pmid: 26639528
[40]   Jaklitsch W M, Kubicek C P, Scrutton M C. The subcellular organization of itaconate biosynthesis in Aspergillus terreus. Journal of General Microbiology, 1991,137(3):533-539.
doi: 10.1099/00221287-137-3-533
[41]   Kuenz A, Krull S. Biotechnological production of itaconic acid:things you have to know. Applied Microbiology and Biotechnology, 2018,102(9):3901-3914.
doi: 10.1007/s00253-018-8895-7 pmid: 29536145
[42]   Eimhjellen K E, Larsen H. The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. The Biochemical Journal, 1955,60(1):139-147.
doi: 10.1042/bj0600139
[43]   Kuenz A, Gallenmüller Y, Willke T, et al. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Applied Microbiology and Biotechnology, 2012,96(5):1209-1216.
doi: 10.1007/s00253-012-4221-y pmid: 22752264
[44]   Krull S, Eidt L, Hevekerl A, et al. Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochemistry, 2017,63:169-176.
doi: 10.1016/j.procbio.2017.08.010
[45]   Saha B C, Kennedy G J. Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. Journal of Microbiological Methods, 2018,144:53-59.
doi: 10.1016/j.mimet.2017.11.002
[46]   Saha B C, Kennedy G J. Efficient itaconic acid production by Aspergillus terreus: Overcoming the strong inhibitory effect of manganese. Biotechnology Progress, 2020,36(2):e2939. DOI: 10.1002/btpr.2939.
[47]   Gnanasekaran R, Dhandapani B, Iyyappan J. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. Bioresource Technology, 2019,283:297-302.
doi: 10.1016/j.biortech.2019.03.107
[48]   Nelson G E N, Traufler D H, Kelley S E, et al. Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Industrial & Engineering Chemistry, 1952,44(5):1166-1168.
doi: 10.1021/ie50509a062
[49]   Lockwood L B, Ward G E. Fermentation process for itaconic acid. Industrial & Engineering Chemistry, 1945,37(4):405-406.
doi: 10.1021/ie50424a029
[50]   Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo E F. World market and biotechnological production of itaconic acid. 3 Biotech, 2018,8(3):1-15.
doi: 10.1007/s13205-017-1019-8
[51]   Maassen N, Panakova M, Wierckx N, et al. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungusUstilago maydis. Engineering in Life Sciences, 2014,14(2):129-134.
doi: 10.1002/elsc.v14.2
[52]   Gao Q, Liu J, Liu L M. Relationship between morphology and itaconic acid production by Aspergillus terreus. Journal of Microbiology and Biotechnology, 2014,24(2):168-176.
doi: 10.4014/jmb.1303.03093
[53]   Saha B C, Kennedy G J. Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus. Biocatalysis and Agricultural Biotechnology, 2019,18:101016.
doi: 10.1016/j.bcab.2019.01.054
[54]   Bentley R, Thiessen C P. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. The Journal of Biological Chemistry, 1957,226(2):703-720.
doi: 10.1016/S0021-9258(18)70852-1
[55]   Collins C H. Safety in industrial microbiology and biotechnology: UK and European classifications of microorganisms and laboratories. Trends in Biotechnology, 1990,8:345-348.
doi: 10.1016/0167-7799(90)90221-I
[56]   Saha B C, Kennedy G J, Bowman M J, et al. Factors affecting production of itaconic acid from mixed sugars by Aspergillus terreus. Applied Biochemistry and Biotechnology, 2019,187(2):449-460.
doi: 10.1007/s12010-018-2831-2
[57]   Gyamerah M H. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Applied Microbiology and Biotechnology, 1995,44(1-2):20-26.
doi: 10.1007/BF00164475
[58]   Larsen H, Eimhjellen K E. The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. The Biochemical Journal, 1955,60(1):135-139.
[59]   Boruta T, Bizukojc M. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World Journal of Microbiology and Biotechnology, 2017,33(2):1-12.
doi: 10.1007/s11274-016-2144-y
[60]   Mattey M. The production of organic acids. Critical Reviews in Biotechnology, 1992,12(1-2):87-132.
doi: 10.3109/07388559209069189
[61]   Riscaldati E, Moresi M, Petruccioli M, et al. Effect of pH and stirring rate on itaconate production by Aspergillus terreus. Journal of Biotechnology, 2000,83(3):219-230.
doi: 10.1016/S0168-1656(00)00322-9
[62]   Bafana R, Sivanesan S, Pandey R A. Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnology Progress, 2019,35(3):e2774.
doi: 10.1002/btpr.2774
[63]   Dwiarti L, Otsuka M, Miura S, et al. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresource Technology, 2007,98(17):3329-3337.
doi: 10.1016/j.biortech.2006.03.016
[64]   Bafana R, Sivanesan S, Pandey R A. Itaconic acid production by filamentous fungi in starch-rich industrial residues. Indian Journal of Microbiology, 2017,57(3):322-328.
doi: 10.1007/s12088-017-0661-5
[65]   Reddy C S K, Singh R P. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresource Technology, 2002,85(1):69-71.
doi: 10.1016/S0960-8524(02)00075-5
[66]   Klement T, Büchs J. Itaconic acid - A biotechnological process in change. Bioresource Technology, 2013,135:422-431.
doi: 10.1016/j.biortech.2012.11.141 pmid: 23298766
[67]   Steen E J, Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010,463(7280):559-562.
doi: 10.1038/nature08721 pmid: 20111002
[68]   Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 2000,74(1):25-33.
doi: 10.1016/S0960-8524(99)00161-3
[69]   León Peláez A M, Serna Cataño C A, Quintero Yepes E A, et al. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control, 2012,24(1-2):177-183.
doi: 10.1016/j.foodcont.2011.09.024
[70]   Liu Y L, Liu G, Zhang J, et al. Itaconic acid fermentation using activated charcoal-treated corn stover hydrolysate and process evaluation based on Aspen plus model. Biomass Conversion and Biorefinery, 2020,10(2):463-470.
doi: 10.1007/s13399-019-00423-3
[71]   Modig T, Lidén G, Taherzadeh M J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical Journal, 2002,363(3):769-776.
doi: 10.1042/bj3630769
[72]   Magalhães A I Jr, de Carvalho J C Jr, Thoms J F Jr, et al. Second-generation itaconic acid: an alternative product for biorefineries? Bioresource Technology, 2020,308:123319.
doi: S0960-8524(20)30591-5 pmid: 32278999
[73]   Tippkötter N, Duwe A M, Wiesen S, et al. Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresource Technology, 2014,167:447-455.
doi: 10.1016/j.biortech.2014.06.052 pmid: 25006020
[74]   Li X, Zheng K, Lai C H, et al. Improved itaconic acid production from undetoxified enzymatic hydrolysate of steam-exploded corn stover using an Aspergillus terreus mutant generated by atmospheric and room temperature plasma. BioResources, 2016,11(4):9047-9058. DOI: 10.15376/biores.11.4.9047-9058.
[75]   Jiménez-Quero A, Pollet E, Zhao M J, et al. Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. Journal of Microbiology and Biotechnology, 2016,26(9):1557-1565.
doi: 10.4014/jmb.1603.03073 pmid: 27291673
[76]   Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013,6(1):16.
doi: 10.1186/1754-6834-6-16
[77]   Wu X F, Liu Q, Deng Y D, et al. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresource Technology, 2017,241:25-34.
doi: 10.1016/j.biortech.2017.05.080
[78]   Pedroso G B, Montipó S, Mario D A N, et al. Building block itaconic acid from left-over biomass. Biomass Conversion and Biorefinery, 2017,7(1):23-35.
doi: 10.1007/s13399-016-0210-1
[79]   Yang J, Xu H, Jiang J C, et al. Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus. Bioresource Technology, 2020,307:123208.
doi: 10.1016/j.biortech.2020.123208
[80]   Jiménez-Quero A, Pollet E, Avérous L, et al. Optimized bioproduction of itaconic and fumaric acids based on solid-state fermentation of lignocellulosic biomass. Molecules, 2020,25(5):1070.
doi: 10.3390/molecules25051070
[1] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[2] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[13] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[14] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[15] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.