Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (01): 98-103    DOI:
    
Advances in Molecular Modification of Microbial Enzymes
GAO Zhao-wei1,2,ZHANG Yu-hong1,ZHANG Wei1
1.Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,China
2.School of Life Science, Southwest University, Chongqing 400715, China
Download: HTML   PDF(396KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, more and more of the enzyme proteins have been carried out using recombinant microorganism bioreactor for large scale production. For reasons of improved the catalytic capability and environmental suitability, or enhanced expression level of the protein, a variety of genetic engineering technology according to protein molecule modification have been applied extensively.Major strategies and achievements of molecular modification for microbial enzyme, such as site-directed mutagenesis, error-prone PCR, DNA shuffling and optimum codon design were reviewed.



Key wordsEnzyme      Molecular modification      Directed evolution      Gene engineering     
Received: 29 October 2009      Published: 27 January 2010
Cite this article:

GAO Diao-Wei, ZHANG Yu-Hong, ZHANG Wei. Advances in Molecular Modification of Microbial Enzymes. China Biotechnology, 2010, 30(01): 98-103.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I01/98

[1] Korkegian A, Black M E, Baker D, et al. Computational thermostabilization of an enzyme.Science, 2005, 308(5723): 857860. 
[2] Jeong M Y, Kim S, Yun C W, et al. Engineering a denovo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J Biotechnol, 2007, 127(2): 300309. 
[3] Mahadevan S A, Wi S G, Lee D S, et al. Sitedirected mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett,2008, 287(2): 205211. 
[4] Kang H J, Uegaki K, Fukada H, et al. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles, 2007, 11(2): 251256. 
[5] HeckmannPohl D M, Bastian S, Altmeier S, et al. Improvement of the fungal enzyme pyranose 2oxidase using protein engineering. J Biotechnol, 2006, 124(1): 2640. 
[6] Kim M S, Lei X G.Enhancing thermostability of Escherichia coli phytase AppA2 by errorprone PCR. Appl Microbiol Biotechnol, 2008, 79(1): 6975. 
[7] Coco W M, Levinson W E, Crist M J, et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 2001,19(4): 354359. 
[8] Cho C M, Mulchandani A, Chen W, et al. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol, 2004, 70(8): 46814685. 
[9] Yuan L, Kurek I, English J, et al. Laboratorydirected protein evolution. Microbiol Mol Biol Rev, 2005, 69(3): 373392. 
[10] Shi C, Lu X, Ma C, et al. Enhancing the thermostability of a novel betaagarase AgaB through directed evolution. Appl Biochem Biotechnol, 2008, 151(1): 5159. 
[11] Nakazawa H, Okada K, Onodera T, et al. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol, 2009, 83(4): 649657. 
[12] Miyazaki K, Takenouchi M, Kondo H,et al. Thermal stabilization of Bacillus subtilis family11 xylanase by directed evolution. J Biol Chem, 2006, 281(15): 1023610242. 
[13] Wang Y, Yuan H, Wang J, et al. Truncation of the cellulose binding domain improved thermal stability of endobeta1,4glucanase from Bacillus subtilis JA18. Bioresour Technol, 2009,100(1): 345349. 
[14] Lin H Y, Chuang H H, Lin F P, et al. Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39Eimplicating the nonnecessity of its 100 Cterminal amino acid residues. Extremophiles, 2008 12(5): 641650. 
[15] Joucla G, Pizzut S, Monsan P, et al. Construction of a fully active truncated alternansucrase partially deleted of its carboxyterminal domain. FEBS Lett, 2006, 580(3): 763768. 
[16] Wen T N, Chen J L, Lee S H, et al. A truncated Fibrobacter succinogenes 1,31,4betadglucanase with improved enzymatic activity and thermotolerance. Biochemistry. 2005, 44(25): 91979205. 
[17] Hai T, Lee J S, Kim T J, et al. The role of the Cterminal region of cyanophycin synthetase from Nostoc ellipsosporum NE1 in its enzymatic activity and thermostability: a key function of Glu(856). Biochim Biophys Acta, 2009, 1794(1): 4249. 
[18] Sun J Y, Liu M Q, Xu Y L, et al. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by Nterminus replacement. Protein Expr Purif, 2005, 42(1): 122130. 
[19] Hong S Y, Lee J S, Cho K M, et al. Construction of the bifunctional enzyme cellulasebetaglucosidase from the hyperthermophilic bacterium Thermotoga maritima.Biotechnol Lett, 2007, 29(6): 931936. 
[20] Lu P, Feng M G. Bifunctional enhancement of a betaglucanasexylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol, 2008, 79(4): 579587. 
[21] Xue F, Gu Z, Feng JA, et al. LINKER: a web server to generate peptide sequences with extended conformation. Nucleic Acids Res, 2004, 32: 562565. 
[22] Puigbo P, Guzman E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res, 2007, 35: 126131. 
[23] Teng D, Fan Y, Yang Y L, et al, Codon optimization of Bacillus licheniformis beta1,31,4glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol, 2007, 74(5): 10741083. 
[24] Chang S W, Lee G C, Shaw J F, et al. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J Agric Food Chem, 2006, 54(3): 815822. 
[25] Mechold U, Gilbert C, Ogryzko V, et al. Codon optimization of the BirA enzyme gene leads to higher expression and an improved efficiency of biotinylation of target proteins in mammalian cells. J Biotechnol, 2005, 116(3): 245249. 
[26] Wu X, Jornvall H, Berndt K D, et al. Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun, 2004, 313(1): 8996. 
[27] Sreekrishna K, Barr K A, Hoard S A, et a1. Expression of human serum albumin in Pichia pastoris. Yeast, 1990, 6:447. 
[28] Huang H Q, Yang P L, Luo H Y, et al. Highlevel expression of a truncated 1,31,4betaDglucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation.Appl Microbiol Biotechnol, 2008,78(1): 95103. 
[29] Hofacker I L. Vienna RNA secondary structure sever. Nucleic Acids Research, 2003, 31 (13) : 34293433. 
[30] Ding Y, Chan C Y, Lawrence C E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Research, 2004, 32: 135141. 
[31] Touzet H, Perriquet O. CARNAC: folding families of noncoding RNAs.Nucleic Acids Research, 2004, 32: 142145. 
[32] Perriquet O, Touzet H, Dauchet M. Finding the common structure shared by two homologous RNAs. Bioinformatics, 2003, 19(1): 108116. 
[33] Siebert S, Backofen R. MARNA:multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons.Bioinformatics, 2005, 21 (16): 33523359. 
[34] Knudsen B, Hein J. Pfold: RNA secondary structure prediction using stochastic context free grammars. Nucleic Acids Research, 2003, 31(13): 34233428.
[35] Mathews D H, Turner D H. Dynalign: Analgorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology, 2002, 317(2): 191203. 
[36] Romanos M A, Scorer C A, Clare J J. Foreign gene expression in yeast: a review. Yeast, 1992, 8: 423488. 
[37] Burland T G. DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol, 2000, 132: 7191. 
[38] Xiong A, Yao Q, Peng R, et al. High level expression of a synthetic gene encoding Peniop horalycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol,2006, 72: 10391047. 
[39] Hohenblum H, Gasser B, Maurer M, et a1. Effects of gene dosage,promoters,and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng, 2004, 85: 367375. 
[40] Damasceno LM, Anderson K A, Ritter G, et a1. Cooverexpression of chaperones for enhanced secretion of a singlechain antibody fragement in Pichia pastoris. Appl Genet Mol Biotechnol,2007, 74: 381389. 
[41] Jung S, Park S. Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol Lett, 2008, 30(4): 717722.

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[4] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[8] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[9] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[10] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[11] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[12] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.
[13] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[14] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[15] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.