Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 72-78    DOI: 10.13523/j.cb.1908013
Orginal Article     
Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production
LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong()
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu 212013, China
Download: HTML   PDF(749KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pyruvate ferredoxin oxidoreductase (PFOR) catalyzes the synthesis of acetyl-CoA from pyruvate and coenzyme A (CoA) using thiamine pyrophosphate (TPP) as coenzyme. The four subunit-type TnPFOR from T. neapolitana was expressed in Escherichia coli and characterized. The gene of TnPFOR from T. neapolitana was cloned into pET-20b(+). TnPFOR was purified by a heat treatment followed by an ion exchange chromatography. The TnPFOR had an optimal condition for its maximum activity at 90℃ and pH 6.5 and it was indeed thermostable with a half-life of more than 1h at 90℃. The application of TnPFOR to catalyze the conversion of pyruvate into acetyl-CoA was also evaluated. The influence of different reaction conditions (reaction temperature, pyruvate concentrations and reaction time) on the synthesis of acetyl-CoA was discussed. The optimal reaction temperature is 90℃, pyruvate concentrations is 1.5mmol/L and the reaction time is 2min.



Key wordsEscherichia coli      Recombinant expression      Thermophilic enzyme      Thermophiles      Synthesis of acetyl-CoA     
Received: 06 August 2019      Published: 18 April 2020
ZTFLH:  Q946.5  
Corresponding Authors: Jian-zhong SUN     E-mail: jzsun1002@ujs.edu.cn
Cite this article:

LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production. China Biotechnology, 2020, 40(3): 72-78.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1908013     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/72

Fig.1 Arrangement of the gene clusters for the TnPFOR enzymes
Fig.2 PCR product of TnPFOR (a) and confirmation of 3 recombinant clones (b) (a) 1:PCR product of TnPFOR; M: DNA marker (b) 1-3:Recombinant clones digested by Xba Ⅰ and Hind Ⅲ; M:DNA marker
Fig.3 SDS-PAGE(a)and native-PAGE(b) analysis of the expression and purification of TnPFOR from T. neapolitana (a) M: Protein marker; 1:Total proteins of E. coli containing pET-20b(+); 2:Total proteins of E. coli containing pET-PFOR; 3:Recombinant TnPFOR purified after ion exchange chromatography (b) 1-3:Native-PAGE analysis of TnPFOR
Fig.4 Effects of temperature, pH and O2 on the activity and enzyme stability of TnPFOR
Fig.5 Detection of reaction products using HPLC (a) Standard sample: 2mmol/L CoA and 1mmol/L acetyl-CoA (b) The reaction with TnPFOR (c) The reaction without TnPFOR
Fig.6 The influence of different reaction conditions on the synthesis of acetyl-CoA (a) The synthesis of acetyl-CoA at various temperatures (b) The synthesis of acetyl-CoA at various pyruvate concentrations (c) The synthesis of acetyl-CoA at various reaction time
[1]   Nielsen J . Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. Mbio, 2014,5(6):e02153.
[2]   Koskinen A M, Karisalmi K . Polyketide stereotetrads in natural products. Chem Soc Rev, 2005,34(8):677-690.
[3]   Go M K, Chow J Y, Cheung V W , et al. Establishing a toolkit for precursor-directed polyketide biosynthesis: exploring substrate promiscuities of acid-CoA ligases. Biochemistry, 2012,51(22):4568-4579.
[4]   Nes W D . Biosynthesis of cholesterol and other sterols. Chem Rev, 2011,111(10):6423-6451.
[5]   Ouyang T, Walt D R . A new chemical method for synthesizing and recycling acyl coenzyme A thioesters. J Org Chem, 1991,56(11):3752-3755.
[6]   Lu X, Liu Y, Yang Y , et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature Communications, 2019,10(1):1378.
[7]   Dubey N C, Tripathi B P, Müller M , et al. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis. ACS Appl Mater Interfaces, 2015,7(3):1500-1507.
[8]   Dubey N C, Tripathi B P, Stamm M , et al. Smart core-shell microgel support for acetyl coenzyme A synthetase: a step toward efficient synthesis of polyketide-based drugs. Biomacromolecules, 2014,15(7):2776-2783.
[9]   Takenaka M, Yoon K S, Matsumoto T , et al. Acetyl-CoA production by encapsulated pyruvate ferredoxin oxidoreductase in alginate hydrogels. Bioresour Technol, 2017,227:279-285.
[10]   任增亮, 堵国成, 陈坚 , 等. 大肠杆菌高效表达重组蛋白策略. 中国生物工程杂志, 2007,27(9):103-109.
[10]   Zeng R L, Du G C, Chen J , et al. Strategies for high-level expression of recombinant protein in Escherichia coli. China Biotechnology, 2007,27(9):103-109.
[11]   罗漫杰, 谢渊, 钱志刚 , 等. 超嗜热酯酶在不同宿主中的异源高效表达研究. 中国生物工程杂志, 2014,34(12):36-44.
[11]   Luo M J, Xie Y, Qian Z G , et al. High-level heterogenous expression of a hyperthermophilic esterase in different hosts. China Biotechnology, 2014,34(12):36-44.
[12]   马蓉, 徐昊, 丁锐 , 等. 大肠杆菌多基因共表达策略. 中国生物工程杂志, 2012,32(4):117-122.
[12]   Ma R, Xu H, Ding R , et al. The strategy of gene coexpression in Escherichia coli. China Biotechnology, 2012,32(4):117-122.
[13]   Dipasquale L ,D' Ippolito G, Fontana A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: an unexpected deviation from the dark fermentation model. International Journal of Hydrogen Energy, 2014,39(10):4857-4862.
[14]   Kletzin A, Adams M W . Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol, 1996,178(1):248-257.
[15]   Yoon K S, Ishii M, Kodama T , et al. Purification and characterization of pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Archives of Microbiology, 1997,167(5):275-279.
[16]   杜明伦, 黄君君, 马香 , 等. 大肠杆菌基因组中重叠基因注释的机器学习优化方法. 中国生物化学与分子生物学报, 2018,34(8):861-867.
[16]   Du M L , H J J, Ma X , et al. Machine learning optimization method for overlapping genes annotation in Escherichia coli genomes. Chinese Journal of Biochemistry and Molecular Biol, 2018,34(8):861-867.
[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[3] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[4] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[5] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[6] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[7] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[8] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[9] DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases[J]. China Biotechnology, 2015, 35(5): 109-118.
[10] YANG Bo, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Wei. Study of the Enzymatic Function of Myosin Cross Reactive Antigen from Bifidobacterium animalis[J]. China Biotechnology, 2012, 32(12): 30-36.
[11] GAO Bing-miao, LI Bao-zhu, WU Yong, LIN Bo, ZHU Xiao-peng, ZHANGSUN Dong-ting, LUO Su-lan. Expression, Purification and Identfication of Recombinant Conotoxin GeXIVAWT[J]. China Biotechnology, 2012, 32(09): 34-40.
[12] WEI Hai-Chao, ZHANG Yan, FAN Yao-Chun, LI Chuan-Yi, WEN Yu-Ling, CHEN Yuan-Ding. Expression of NSP1 of a Group A Human Rotavirus and Immunological Properties[J]. China Biotechnology, 2010, 30(03): 15-21.
[13] Kun CAI Jun YIN Hui WANG. The Recombinant Expression and Receptor-binding activity of the B subunit of Shiga-like toxin type Ⅱ[J]. China Biotechnology, 2008, 28(10): 23-27.
[14] . Progress in the Study of Heparinases[J]. China Biotechnology, 2007, 27(8): 116-124.
[15] . Expression,Purification of PUMA-BH3 Death Domain Peptide in E.coli and Identification of Its Pro-apoptotic Activity[J]. China Biotechnology, 2007, 27(7): 27-32.