Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 154-162    DOI: 10.13523/j.cb.1905056
Orginal Article     
Strategies to Improve Crystallizability of Glycosylated Enzyme
CHEN Xin-yi1,LIU Hu1,DAI Da-zhang1,LI Chun1,2,**()
1 College of Chemistry and Chemical Engineering, Beijing 100081, China
2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(901KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycosylation is an important post-translational modification, which has important effects on expression regulation, folding, secretion and function of the proteins. Glycosylated modification mainly exists in eukaryotes, however it is found that some prokaryotes also possess that modification. Depending on the type of amino acid linked to the sugar chain, glycosylation can be divided into N-glycosylation and O-glycosylation. Enzymes are highly specific and efficient biocatalysts produced by living cells, which are proteins or RNA in chemical nature. The role of glycosylation in the internal structure and external function of enzymes has been a research hotspot in recent years, especially the influence on biocatalytic performance and stability. It has attracted much attention due to its far-reaching significance on the design and modification of enzymes. To understand the mechanism of influence made by glycosylation modification on enzyme structure and biocatalytic activity can provide ideas and directions for rational/semi-rational design and modification of enzyme molecules. X-ray crystallography is one of the main methods to study the structures of glycosylated enzymes, which combine X-ray diffraction and protein crystallography. However, complex sugar chains cause chemical and structural heterogeneity of glycosylated enzymes, which hinders crystal formation and crystal diffraction. Hydrolysis treatment with glycosidase, introduction of glycosyltransferase inhibitors and optimization of heterologous expression system are all important strategies to improve the crystallizability of glycosylated enzymes. These methods can improve the homogeneity of glycosylated enzymes while avoiding the damage to stability and catalytic activity of those.



Key wordsEnzyme      Protein      Crystallization      Glycosylation      X-ray crystallography     
Received: 31 May 2019      Published: 18 April 2020
ZTFLH:  Q078  
Corresponding Authors: Chun LI     E-mail: lichun@bit.edu.cn
Cite this article:

CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme. China Biotechnology, 2020, 40(3): 154-162.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1905056     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/154

Fig.1 The role of "glycol-linkers"on interaction between subunits
Fig. 2 Structural alignment of mutant enzymes and PGUS-P Red and yellow represent sequence before and after mutation, respectively
Fig.3 Two methods of meteorological diffusion crystallization
Fig.4 Acting sites of Endo H and PNGase F
[1]   Nishizuka Y . Studies and perspectives of protein kinase C. Science, 1986,233(4761):305-312.
[2]   Bartel D P . MicroRNAs: target recognition and regulatory functions. Cell, 2009,136(2):215-233.
[3]   郭晓强 . 酶的研究与生命科学(一):酶本质的理解和认识. 自然杂志, 2014,36(3):208-217.
[3]   Guo X Q . Enzymes and life science(Ι): understanding the nature of enzyme. Chinese Journal of Nature, 2014,36(3):208-217.
[4]   Apweiler R, Hermjakob H, Sharon N . On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999,1473(1):4-8.
[5]   Magnelli P, Bielik A, Guthrie E . Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. Journal of Visualized Experiments, 2011,801(58):e3749-e3749.
[6]   Dondoni A, Marra A . Methods for anomeric carbon-linked and fused sugar amino acid synthesis: the gateway to artificial glycopeptides. Chemical Reviews, 2001,100(12):4395-4422.
[7]   王晓龙, 王秀然, 卢天成 . 蛋白质糖基化修饰的研究进展. 基因组学与应用生物学, 2017,36(10):468-472.
[7]   Wang X L, Wang X R, Lu T C . The research progress of protein glycosylation modification. Genomics and Applied Biologys, 2017,36(10):468-472.
[8]   Betenbaugh M J, Tomiya N, Narang S , et al. Biosynthesis of human-type-glycans in heterologous systems. Current Opinion in Structural Biology, 2004,14(5):601-606.
[9]   Chung C Y, Majewska N I, Wang Q , et al. Snapshot: N-glycosylation processing pathways across kingdoms. Cell, 2017,171(1):258-258.
[10]   Bilova T, Lukasheva E, Brauch D , et al. A snapshot of the plant glycated proteome. Journal of Biological Chemistry, 2016,291(14):7621-7636.
[11]   王胜, 邹霞, 张延 . 基于质谱的蛋白质O-糖基化分析. 化学进展, 2010,22(12):2428-2435.
[11]   Wang S, Zou X, Zhang Y . Mass spectrometry based analysis of protein O-glycosylation. Progress in Chemistry, 2010,22(12):2428-2435.
[12]   刘志成, 潘超, 朱力 , 等. 原核生物糖基转移酶PglL的研究进展. 生物技术通讯, 2016,27(5):724-727.
[12]   Liu Z C, Pan C, Zhu L , et al. Progress on glysocyl transferase PglL of prokaryotes. Letters in Biotechnology, 2016,27(5):724-727.
[13]   Eichler J, Koomey M . Sweet new roles for protein glycosylation in prokaryotes. Trends Microbiol, 2017,25(8):662-672.
[14]   武金霞, 赵晓瑜 . 糖蛋白的结构,功能及分析方法. 生物技术通报, 2004, ( 1):31-34.
[14]   Wu J X, Zhao X Y . Structure function and analysis methods of glycoprotein. Biotechnology Bulletin, 2004, ( 1):31-34.
[15]   施立楠, 吴军 . 糖蛋白糖链的分析. 生物技术通讯, 2005,16(1):60-63.
[15]   Shi L N, Wu J . An analysis of saccharide of glysoprotin. Letters in Biotechnology, 2005,16(1):60-63.
[16]   李凤, 管月清, 张艳梅 , 等. 中药多糖及人血清中糖蛋白N-糖链的毛细管电泳指纹图谱研究. 分析测试学报, 2017,36(12):112-117.
[16]   Li F, Guan Y Q, Zhang Y M , et al. Research on capilary electrophoresis fingerprints of polysaccharides in traditional Chinese medicines and N-glycome in Human Serum Glycoprotein. Journal of Instrumental Analysis, 2017,36(12):112-117.
[17]   陈海霞, 耿美玉, 管华诗 . 细胞膜糖蛋白及其寡糖链分析方法的研究进展. 中国生物工程杂志, 2003,23(3):20-24.
[17]   Chen H X, Geng M Y, Guan H S . Advances in the analysis of cell membrane glycoproteins and their oligosaccharide chains. Journal of Chinese Biotechnology, 2003,23(3):20-24.
[18]   于晶, 李晓敏, 李红梅 , 等. 糖蛋白糖基化位点及糖型的多重质谱分析. 分析化学, 2015,43(4):564-569.
[18]   Yu J, Li X M, Li H M , et al. Analysis of glycosylation sites and glycan structure of glycoprotein by multiple mass spectrometric techniques. Chinese Journal of Analytical Chemistry, 2015,43(4):564-569.
[19]   卢庄, 王杉, 代景泉 , 等. 基质辅助激光解吸附电离-飞行时间串联质谱研究重组人促红细胞生成素一级结构. 分析化学, 2006,34(5):591-597.
[19]   Lu Z, Wang S, Dai J Q , et al. Primary structure determination of recombinant human erythropoietin by matrix-assisted laser desorption ionization-time of flight-time of flight-mass spectrometry. Chinese Journal of Analytical Chemistry, 2006,34(5):591-597.
[20]   Zou S, Xie L, Liu Y , et al. N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum β-d-glucuronidase. Journal of Biotechnology, 2012,157(3):399-404.
[21]   Zou S, Liu G, Kaleem I , et al. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing β-glucuronidase from Penicillium purpurogenum Li-3. Process Biochemistry, 2013,48(2):358-363.
[22]   Fonseca M R, Vieira D S, Alponti J S , et al. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase. Journal of Biological Chemistry, 2013,288(35):25522-25534.
[23]   Zhu J, Liu H, Zhang J , et al. Effects of Asn-33 glycosylation on the thermostability of Thermomyces lanuginosus lipase. Journal of Applied Microbiology, 2014,117(1):151-159.
[24]   Han M, Wang X, Ding H , et al. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme & Microbial Technology, 2014,54(1):32-37.
[25]   朱庆锋, 王志林, 崔百元 , 等. 糖基化影响真菌植酸酶的胰蛋白酶耐受性. 华中师范大学学报(自科版), 2016,50(5):746-751.
[25]   Zhu Q F, Wang Z L, Cui B Y , et al. Glycosylation of fungal phytase affects its resistance to trypsin. Journal of Central China Normal Unicersity(Nat Sci), 2016,50(5):746-751.
[26]   Feng X, Wang X, Han B , et al. Design of glyco-linkers at multiple structural levelsto modulate protein stability. The Journal of Physical Chemistry Letters, 2018,9(16):4638-4645.
[27]   冯旭东, 吕波, 李春 . 酶分子稳定性改造研究进展. 化工学报, 2016,67(1):277-284.
[27]   Feng X D, Lv B, Li C . Advances in enzyme stability modification. CIESC Journal, 2016,67(1):277-284.
[28]   Yu X W, Wang R, Zhang M , et al. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris. Microbial Cell Factories, 2012,11(102):1-11.
[29]   Huang L, Xu J H, Yu H L . Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp138 for enhancing bioreduction of aromatic α-keto esters. Journal of Biotechnology, 2015,203(11):54-61.
[30]   Miller G C, Long C J, Bojilova E D , et al. Role of N-linked glycosylation in the secretion and activity of endothelial lipase. Journal of Lipid Research, 2004,45(11):2080-2087.
[31]   王小艳, 樊艳爽, 韩蓓佳 , 等. 糖基化改造β-葡萄糖醛酸苷酶的热稳定性. 化工学报, 2015,66(9):3669-3677.
[31]   Wang X Y, Fan Y S, Han B J , et al. Improvement of thermostability of recombinant β-glucuronidase by glycosylation. CIESC Journal, 2015,66(9):3669-3677.
[32]   Han M, Wang X, Yan G , et al. Modification of recombinant elastase expressed in Pichia pastoris by introduction of N-glycosylation sites. Journal of Biotechnology, 2014,171(1):3-7.
[33]   Holmes N . A splicing switch for T cells. Science, 2008,321(5889):646-647.
[34]   González-Valdez J, Rito-Palomares M, Benavides J . Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses. Analytical & Bioanalytical Chemistry, 2012,403(8):2225-2235.
[35]   林亚, 刘志杰, 龚为民 . 蛋白质结构研究. 生命科学, 2007,19(3):289-293.
[35]   Lin Y, Liu Z J, Gong W M . The research of protein structure. Chinese Bulletin of Life Sciences, 2007,19(3):289-293.
[36]   Miao J, Charalambous P, Kirz J , et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 1999,400(6742):342-344.
[37]   张辰艳, 尹大川, 鹿芹芹 , 等. 蛋白质结晶条件的筛选策略研究进展. 材料导报, 2010,24(5):22-28.
[37]   Zhang C Y, Yin D C, Lu Q Q , et al. Research progresses in screening strategies of protein crystal lization. Materials Review, 2010,24(5):22-28.
[38]   Mcpherson A . Introduction to the crystallization of biological macromolecules. Current Topics in Membranes, 2009,63(1):5-23.
[39]   舒占永, 毕汝昌 . 蛋白质晶体的优化生长. 生物化学与生物物理进展, 1997,24(5):396-401.
[39]   Shu Z Y, Bi R C . Optimizing protein crystallization. Progress in Biochemistry and Biophysics, 1997,24(5):396-401.
[40]   陈瑞卿 . 物理环境影响蛋白质晶体形核的研究进展. 生物工程学报, 2011,27(1):9-17.
[40]   Chen R Q . Effects of physical environments on nucleation of protein crystals: a review. Chinese Journal of Biotechnology, 2011,27(1):9-17.
[41]   Chayen N, Saridakis E . Protein crystallization: from purified protein to diffraction-quality crystal. Nature Methods, 2008,5(2):147-153.
[42]   刘四化, 王倩倩, 肖良 , 等. 蛋白质结晶方法的研究进展. 中国生化药物杂志, 2011,32(5):405-407.
[42]   Liu S H, Wang Q Q, Xiao L , et al. Progress in techniques on protein crystallization. Chinese Journal of Biochemical Pharmaceutics, 2011,32(5):405-407.
[43]   冯炜玮, 陈志伟 . 蛋白质结晶及其影响因素研究进展. 安徽农业科学, 2010,38(18):9412-9414.
[43]   Feng W W, Chen Z W . Research progress on crystallized protein and its impact factors. Journal of Anhui Agriculture and Science. 2010,38(18):9412-9414.
[44]   郭云珠, 刘君, 王燕 , 等. 材料界面诱导蛋白质晶体异相形核的研究进展. 材料导报, 2010,24(23):13-17.
[44]   Guo Y Z, Liu J, Wang Y , et al. Research progresses of heterogeneous nucleation of protein crystals induced by material surfaces. Materials Review, 2010,24(23):13-17.
[45]   Jimenez-Barbero J , Beatriz F D T, Peng W, et al. Avenues to characterize the interactions of extended N-glycans with proteins by NMR spectroscopy: the influenza hemagglutinin case. Angewandte Chemie International Edition, 2018,57(46):15051-15055.
[46]   Lee J E, Fusco M L, Erica O S . An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nature Protocols, 2009,4(4):592-604.
[47]   Kwong P D, Wyatt R, Desjardins E , et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). Journal of Biological Chemistry, 1999,274(7):4115-23.
[48]   Agirre J, Ariza A, Offen W A , et al. Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 β-D-glucosidases. Acta Crystallographica Section D Biological Crystallography, 2016,72(2):254-265.
[49]   Dalit S B, Yaakov L . Effect of glycosylation on protein folding: a close look at thermodynamic. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(24):8256-8261.
[50]   Chang V T, Crispin M, Aricescu A R , et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure, 2007,15(3):267-273.
[51]   Hoek A N V, Wiener M C, Verbavatz J M , et al. Purification and structure-function analysis of native, PNGase F-treated, and endo-.beta.-galactosidase-treated CHIP28 water channels. Biochemistry, 1995,34(7):2212-2219.
[52]   Tucholski J, Simmons M S, Pinner A L , et al. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia. Neuroreport, 2013,24(12):688-691.
[53]   Wu L, Viola C M, Brzozowski A M , et al. Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural & Molecular Biology, 2015,12(12):1016-1023.
[54]   Li A K, Tao S C, Jiang Q , et al. Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Molecular Systems Biology, 2009,5(1):1-11.
[55]   Zheng K, Bantog C, Bayer R . The impact of glycosylation on monoclonal antibody conformation and stability. mAbs, 2011,3(6):568-576.
[56]   Ere?o-Orbea J, Sicard T, Cui H , et al. Characterization of glycoproteins with the immunoglobulin fold by X-ray crystallography and biophysical techniques. Journal of Visualized Experiments, 2018,137(e57750):1-15.
[57]   Baker H M, Day C L, Norris G E , et al. Enzymatic deglycosylation as a tool for crystallization of mammalian binding proteins. Acta Crystallographica, 2010,50(4):380-384.
[58]   Grueninger-Leitch F, Darcy A, Darcy B , et al. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Science. 1996,5(12):2617-2622.
[59]   Kostrewa D, Wyss M , D'Arcy A , et al.Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4? resolution. Journal of Molecular Biology, 1999,288(5):965-974.
[60]   Helenius A, Aebi M . Intracellular functions of N-linked glycans. Science, 2001,291(5512):2364-2369.
[61]   Ploegh H, Neefjes J J . Protein glycosylation. Current Opinion in Cell Biology, 1991,2(6):1125-1130.
[62]   Antje V S, Julia F, Hisashi K . Role of complex N-glycans in plant stress tolerance. Plant Signaling & Behavior, 2008,3(10):871-873.
[63]   Elbein A D, Tropea J E, Mitchell M , et al. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. Journal of Biological Chemistry, 1990,265(26):15599-15605.
[64]   Broek L A G M, Vermaas D J, Heskamp B M , et al. Chemical modification of azasugars, inhibitors of N-glycoprotein-processing glycosidases and of HIV-I infection: Review and structure-activity relationships. Recueil des Travaux Chimiques des Pays-Bas, 1993,112(2):82-94.
[65]   Lina K, Guan Z Q, Sophie Y D , et al. Two distinct N-glycosylation pathways process the haloferax volcanii S-layer glycoprotein upon changes in environmental salinity. Mbio, 2013,4(6):e00716-13.
[66]   Mehtap A Q, Jerry E . Protein N-glycosylation in archaea: defining haloferax volcanii genes involved in S-layer glycoprotein glycosylation. Molecular Microbiology, 2010,61(2):511-525.
[67]   Schoberer J, Strasser R . Plant glyco-biotechnology. Seminars in Cell & Developmental Biology 2017,80:133-141.
[68]   Zhang Y, Wang S J, Adnan H , et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 2015,33(8):842-844.
[69]   Lv B, Sun H, Huang S , et al. Structure-guided engineering of the substrate specificity of a fungal beta-glucuronidase toward triterpenoid saponins. Journal of Biological Chemistry, 2018,293(2):433-443.
[70]   Schubert M, Aeschbacher T, Zierke M , et al. A secondary structure element present in a wide range of fucosylated glycoepitopes. Chemistry, 2017,23(48):11598-11610.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[3] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[6] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[7] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[8] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[9] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[10] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[11] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[12] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[13] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[14] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[15] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.