Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 65-70    DOI: 10.13523/j.cb.20190709
    
Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction
Jing-yun FENG1,2,Ling-qia SU1,2,Jing WU1,2,**()
1 State Key Laboratory of Food Science and Technology, Jiangnan University,Wuxi 214122,China
2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(661KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Trehalose was prepared from rice starch by multiple enzymes reaction. The optimum conditions for the production of trehalose were determined under laboratory conditions: 15% (m/V) rice starch as substrate, catalytic temperature 45℃, pH6.0, DE 16,α/β-CGTase 1.4U/ml, catalytic 28h and period 12h. The conversion of trehalose increased from 50% to 73% by the innovated method. When the substrate concentration was 25%, trehalose yield reached 182.5g/L. Then high concentration trehalose was separated and extracted. The effects of decolorization,resin separation, concentration and crystallization of activated carbon on trehalose extraction were investigated.



Key wordsTrehalose      Multiple enzyme      Enzyme catalyzed reaction      Separation and extraction     
Received: 07 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Jing WU     E-mail: jingwu@jiangnan.edu.cn
Cite this article:

Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction. China Biotechnology, 2019, 39(7): 65-70.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190709     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/65

Fig.1 Mechanism of trehalose production by double enzyme method
Fig.2 Effect of addition of α/β-CGTase on yield
Fig.3 Effect of pH on trehalose conversion rate
Fig.4 Effect of DE on trehalose conversion rate
Fig.5 Effect of temperature on conversion of trehalose
活性炭类型 A B C D 直接过滤
活性炭量(g/L) 2.5 2.5 2.5 2.5 2.5
A420 0.421±0.02 0.301±0.02 0.476±0.02 0.406±0.02 0.611±0.02
Table 1 Effect of active carbon species on decolorization effect
Fig.6 Effect of active carbon addition on decolorization effect
Fig.7 Effect of temperature on decolorization of activated carbon
Fig.8 Effect of separation speed on the results of segregation
Fig.9 Cystallization curve of trehalose
[1]   薛鸿毅, 张莉, 徐汝意 , 等. 酶法生产海藻糖研究进展. 中国食品添加剂, 2011,( 4):159-162.
[1]   Xue H Y, Zhang L, Xu R Y , et al. Study on the production of trehalose through enzyme method. China Food Additives, 2011,( 4):159-162.
[2]   聂凌鸿 . 海藻糖研究进展. 粮食与油脂, 2002,( 8):44-45.
[2]   Nie L H . Progress on the study of trehalose. Cereals & Oils, 2002,( 8):44-45.
[3]   田成福 . 以淀粉为原料酶法生产海藻糖的研究. 无锡: 江南大学, 2017.
[3]   Tian C F . Study on enzymatic production of trehalose from starch. Wuxi: Jiangnan University, 2017.
[4]   唐斌, 张露, 熊旭萍 , 等. 海藻糖代谢及其调控昆虫几丁质合成研究进展. 中国农业科学, 2018,51(4):697-707.
[4]   Tang B, Zang L, Xiong X P , et al. Advances in trehalose metabolism and its regulation of insect chitin synthesis. Scientia Agriculture Sinica, 2018,51(4):697-707.
[5]   吴世雄 . 嗜酸热硫化叶菌MTSase和MTHase的异源表达及应用. 无锡: 江南大学, 2016.
[5]   Wu S X . Heterologous expression of sulfolobus acidocaldariusAT CC 33909 MTSase and MTHase and its application. Wuxi: Jiangnan University, 2016.
[6]   Jeon B S, Taguchi H, Sakai H , et al. 4-alpha-glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis——enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. FEBS Journal, 2010,248(1):171-178.
[7]   Tachibana Y, Fujiwara S, Takagi M , et al. Cloning and expression of the 4- alpha -glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and character rization of the enzyme. Journal of Fermentation & Bioengineering, 1997,83(6):540-548.
[8]   朱荣 . 4-α-糖基转移酶的重组表达及制备大元环糊精的研究. 无锡:江南大学, 2016.
[8]   Zhu R . Recombinant expression of 4-a-glucanotransferase and its application in the preparation of cycloamylose. Wuxi: Jiangnan University, 2016.
[9]   Kang Z, Su L, Duan X , et al. High-level extracellular protein production in Bacillus subtilis, using an optimized dual-promoter expression system. Microbial Cell Factories, 2017,16(1):32.
doi: 10.1186/s12934-017-0649-1
[10]   李云菲 . Bacillus stearothermophilus α/β-环糊精葡萄糖基转移酶在Bacillus subtilis表达元件的优化及菌株改造. 无锡:江南大学, 2016.
[10]   Li Y F . Optimization of Bacillus subtilis expression element for B.stearothermophilus α/β-CGTase and transformation of strain. Wuxi: Jiangnan University, 2016
[11]   王魁, 宿玲恰, 吴敬 . 重组Athrobacter ramosus S34MTSase和MTHase的酶学性质及其制备海藻糖的应用条件优化. 食品与发酵工业, 2017,43(7):1-6.
[11]   Wang K, Su L Q , Wu J. enzymatic properties of recombinant Athrobacter ramosus S34 MTSase and MTHase and optimization of application conditions for production of trehalose. Food and Fermentation Industries, 2017,43(7):1-6.
[12]   顾正彪, 李兆丰, 洪雁 . 大米淀粉的结构、组成与应用. 中国粮油学报, 2004,19(2):21-27.
[12]   Gu Z B, Li Z F, Hong Y . Structure, composition and application of rice starch. Journal of The Chinese Cereals and Oils Association, 2004,19(2):21-27.
[13]   李于, 肖冬光, 王兰 , 等. 酵母海藻糖提取及精制工艺的研究. 天津科技大学学报, 2002,( 4):4-7.
[13]   Li Y, Xiao D G, Wang L , et al. Extraction and purification of trehalose from yeast. Journal of Tianjing University of Light Industry, 2002,( 4):4-7.
[14]   黄和, 江凌, 张涛 , 等. 一种制备海藻糖晶体的方法:中国,CN102924539A, 2013-02-13. http://kns.cnki.net/kns/brief/default_result.aspx.
[14]   Huang H, Jiang L, Zhang T , et al. A Method for preparing trehalose crystals:China,CN102924539A, 2013-02-13. http://kns.cnki.net/kns/brief/default_result.aspx.
[15]   王腾飞, 王瑞明, 李丕武 . 一种海藻糖的分离纯化方法:中国,CN103450288A, 2013-12-18. http://kns.cnki.net/kns/brief/default_result.aspx.
[15]   Wang T F, Wang R M, Li P W. A method for isolation and purification of trehalose: China, CN103450288A, 2013-12-18. http://kns.cnki.net/kns/brief/default_result.aspx.
[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[3] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[4] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[5] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[6] FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 84-89.
[7] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.
[8] . Co-Immobilization of Permeabilized Meiothermus sp. Cells Containing Trehalose Synthase[J]. China Biotechnology, 2007, 27(11): 32-36.