Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 78-91    DOI: 10.13523/j.cb.2105001
    
Plant-derived UDP-glycosyltransferase and Its Molecular Modification
GUO Fang1,ZHANG Liang1,FENG Xu-dong1,**(),LI Chun1,2,3
1 Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
2 Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
3 Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(2480KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycosylation can increase the structural diversity of plant natural products, and effectively improve their water solubility, pharmacological activity, and bioavailability, which are critical for the drug development of plant natural products. UDP-glycosyltransferases (UGTs) catalyze the transfer of sugar groups from the activated UDP sugar donors to the acceptors to form glycosidic bonds. The glycosylation of natural products is mainly achieved by UGTs in plants. The rapid growth of plant genome and transcriptome data provides an unprecedented opportunity to explore new UGTs. Three methods have been developed to characterize the catalytic function of UGTs: mutant isolation and cloning, direct gene cloning and characterization, and heterologous probe screening of cDNA libraries. As of December 2020, 412 UGTs have been functionally identified. UGTs belong to the GT-1 family and share a unified conserved sequence (plant secondary product glycosyltransferase, PSPG). The structure of UGTs is mainly solved by the X-ray diffraction technology. The GT-B topology of UGTs contains one N-terminal domain and C-terminal domain both with Rossmann (β/α/β)-like folds. The middle cavity becomes the binding regions of the sugar donors and receptors. MODELLER, I-TASSER and SWISS-MODEL are three commonly used software for building three-dimensional structural models of proteins, which have been widely employed in modeling UGTs structure. UGTs exhibit an inverting catalytic mechanism, usually associated with a bimolecular nucleophilic substitution reaction (SN2), and the highly conserved catalytic dimer (His-Asp) in the active site is essential for the glycosylation activity of UGTs. However, most plant UGTs show low catalytic activity, stability, and substrate specificity, which has limited their industrial application. Recently, the improvement of the catalytic properties of UGTs by molecular modification has achieved significant progress. This review summarizes the following five modification methods for UGTs. The first method, domain replacement combined with site-directed mutation, is mostly used between UGTs with high sequence similarity or between enzymes of the same family to produce new UGTs with different functions. Because they have a highly conservative three-dimensional structure, including the N-terminal domain that recognizes the acceptors and the C-terminal domain that recognizes the UDP-sugar donors, the specificity of the sugar-donor and acceptor substrates is quite different. The key amino acids in or near the catalytic activity pocket usually determine or directly affect the catalytic activity and substrate specificity of UGTs. After multiple sequence alignments, the strategy of replacing non-consensus amino acid residues with consensus sequences at each position is the second method, called activity-based sequence conservation analysis (ASCA), which can improve the substrate specificity and catalytic activity of UGTs. Through three-dimensional structure simulation and protein-ligand interaction analysis, the structural characteristics of active sites and their effects on functions are deeply studied. Rational design based on the structure-function relationship is the third method and has become a powerful means of molecular modification for UGTs. Directed evolution does not require an in-depth understanding of the spatial structure and catalytic mechanism of UGTs. The fourth method is to simulate the natural biological evolution process by utilizing error-prone PCR or semi-rational saturation mutation techniques, and screening mutations with optimized performance. The last one, the structure-guided directed evolution method, such as iterative saturation mutagenesis (ISM) and combined active site saturation test (CAST), bears the advantages of both rational design and directed evolution. Overall, this review delineates the mining strategies, properties, three-dimensional structure, and catalytic mechanism of plant-derived UGTs, and summarizes the strategies of molecular modification for UGTs, including rational design and directed evolution. It provides guidance for the industrialization of plant natural product glycosides by enzymatic synthesis.



Key wordsUDP-glycosyltransferase      Natural products      Site-directed mutation      Directed evolution      High-throughput screening     
Received: 02 May 2021      Published: 30 September 2021
ZTFLH:  Q816Q814.9  
Corresponding Authors: Xu-dong FENG     E-mail: xd.feng@bit.edu.cn
Cite this article:

GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification. China Biotechnology, 2021, 41(9): 78-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105001     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/78

名称 来源 特性 参考文献
UGT72B1 Arabidopsis thaliana UDP-Glc: phenol β-glucosyltransferase [28]
UGT74F2 UDP-Glc: salicylic acid / anthranilate / BA-β-glucosyltransferase [29]
UGT89C1 UDP-β-L-Rha: flavonol α-7-O-L-rhamnosyltransferase [30]
UGT78K6 Clitoria ternatea UDP-Glc: anthocyanidin 3-O-glucosyltransferase [31]
UGT708C1 Fagopyrum esculentum UDP-Glc: 2-hydroxyflavanone C-glucosyltransferase [32]
GgCGT Glycyrrhiza glabra di-C-glycosyltransferase [33]
LpCGTa Landoltia punctata flavone-C-glucosytransferase [34]
LpCGTb flavone-C-glucosytransferase [34]
UGT71G1 Medicago truncatula UDP-Glc: flavonoid β-glucosyltransferase [35]
UGT85H2 multifunctional UDP-Glc: (iso)flavonoid β-glucosyltransferase [36]
UGT78G1 UDP-Glc: (iso)flavonoid β-glucosyltransferase [37]
Os79 Oryza sativa Japonica Group UDP-Glc: deoxynivalenol β-glucosyltransferase [38]
PtigS Persicaria tinctoria indican synthase [39]
PaGT2 Phytolacca americana 6-hydroxyflavone β-glucosyltransferase [40]
PaGT3 UDP-Glc: 6- and 7-hydroxyflavone β-glucosyltransferase [41]
SbCGTa Scutellaria baicalensis flavone-C-glucosytransferase [34]
SbCGTb flavone-C-glucosytransferase [34]
UGT74AC2 Siraitia grosvenorii flavonoids-O-glycosyltransferase [42]
SgUGT74AC1 Siraitia grosvenorii UDP-glucosyltransferase [10]
UGT76G1 Stevia rebaudiana UDP-Glc: stevioside β-glucosyltransferase [43]
UGT202A2 Tetranychus urticae UDP-glycosyltransferase -
TcCGT1 Trollius chinensis C-glycosyltransferase [44]
VvGT1 Vitis vinifera UDP-Glc: phenol β-glucosyltransferase [45]
ZmCGTa Zea mays B73 flavone-C-glucosytransferase [34]
UGT73P12 Glycyrrhiza uralensis UDP-GlcA: glycyrrhetinic acid 3-O-monoglucuronide -
Table 1 Plant-derived UGTs with structural analysis
Fig.1 Three-dimensional structure of UGTs with GT-B folding
Fig.2 The reaction mechanism of UGTs (a)SN2 type reaction (b)SNi type reaction B: Catalytic residues in UGTs; X: O, N, S, C atoms that can generate glycosidic bonds
Fig.3 The rational design of UDP-glycosyltransferases (a) Establishment of three-dimensional simulation structure and molecular docking (b) Force analysis to determine key amino acid residues (c) Multiple sequence alignment
筛选目标 方法简述 筛选形式 应用范围 参考文献
糖供体 将荧光物质2-氯-4-硝基苯与葡萄糖相连,偶联OleD 荧光 所有UGTs [84]
糖基化产物 荧光激活细胞分选(FACS) 荧光 特定GTs [82]
糖基化产物 将固定化受体阵列上的反应阵列与质谱分析相结合 质谱 所有GTs [83]
糖基化产物 微阵列扫描仪检测供体糖芯片上的荧光 荧光 所有GTs [85]
糖基化产物 放射性标记糖供体,受体被固定 放射性 所有GTs [86]
NDP Ant-Zn的荧光被邻苯二酚紫猝灭,NDP恢复荧光 荧光 NDP-糖依赖型GTs [78]
NDP 基于perylene-Zn的UDP探针结合UDP 荧光 UGTs [87]
NDP 基于双核锌配合物的荧光探针 荧光 NDP-糖依赖型GTs [88]
NDP 具有远红TR-FRET读数的UDP竞争性免疫测定方法 荧光 NDP-糖依赖型GTs [89]
NDP 一步添加将UDP转换为ATP,并检测发光 荧光 UGTs [89]
Pi 特定磷酸酶定量释放无机磷酸,比色孔雀石绿试剂 光密度 NDP-糖依赖型GTs [76]
Pi 特定磷酸酶定量释放无机磷酸,磷钼蓝发色反应 光密度 NDP-糖依赖型GTs [77]
质子 糖苷键形成过程中质子释放,pH指示剂的吸光度变化 光密度 所有GTs [90]
Table 2 Summary of high-throughput screening methods for glycosyltransferases
[1]   Newman D J, Cragg G M. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 2016, 79(3):629-661.
doi: 10.1021/acs.jnatprod.5b01055 pmid: 26852623
[2]   Rahimi S, Kim J, Mijakovic I, et al. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 2019, 37(7):107394.
doi: S0734-9750(19)30075-8 pmid: 31078628
[3]   Song C K, Härtl K, McGraphery K, et al. Attractive but toxic: emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Molecular Plant, 2018, 11(10):1225-1236.
doi: 10.1016/j.molp.2018.09.001
[4]   Le Roy J, Huss B, Creach A, et al. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 2016, 7:735.
[5]   Kren V, Martínková L. Glycosides in medicine: “The role of glycosidic residue in biological activity”. Current Medicinal Chemistry, 2001, 8(11):1303-1328.
doi: 10.2174/0929867013372193
[6]   Liu Z H, Liu Y X, Pu Z E, et al. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 2013, 35(11):1765-1780.
doi: 10.1007/s10529-013-1277-4
[7]   Tiwari P, Sangwan R S, Sangwan N S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and Scopes. Biotechnology Advances, 2016, 34(5):714-739.
doi: 10.1016/j.biotechadv.2016.03.006
[8]   Huang G L, Lv M, Hu J C, et al. Glycosylation and activities of natural products. Mini Reviews in Medicinal Chemistry, 2016, 16(12):1013-1016.
doi: 10.2174/138955751612160727164559
[9]   Khorolragchaa A, Kim Y J, Rahimi S, et al. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene, 2014, 536(1):186-192.
doi: 10.1016/j.gene.2013.07.077 pmid: 23978613
[10]   Li J, Yang J G, Mu S C, et al. Efficient O-glycosylation of triterpenes enabled by protein engineering of plant glycosyltransferase UGT74AC1. ACS Catalysis, 2020, 10(6):3629-3639.
doi: 10.1021/acscatal.9b05232
[11]   Zhang P, Zhang Z, Zhang L J, et al. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Computational and Structural Biotechnology Journal, 2020, 18:1383-1390.
doi: 10.1016/j.csbj.2020.06.003 pmid: 32637037
[12]   Osmani S A, Bak S, Møller B L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry, 2009, 70(3):325-347.
doi: 10.1016/j.phytochem.2008.12.009 pmid: 19217634
[13]   Chen D W, Chen R D, Wang R S, et al. Probing the catalytic promiscuity of a regio- and stereospecific C-glycosyltransferase from Mangifera indica. Angewandte Chemie (International Ed in English), 2015, 54(43):12678-12682.
doi: 10.1002/anie.201506505
[14]   He J B, Zhao P, Hu Z M, et al. Molecular and structural characterization of a promiscuous C -glycosyltransferase from Trollius chinensis. Angewandte Chemie International Edition, 2019, 58(33):11513-11520.
doi: 10.1002/anie.v58.33
[15]   Zhang L, Ren S C, Liu X F, et al. Mining of UDP-glucosyltrfansferases in licorice for controllable glycosylation of pentacyclic triterpenoids. Biotechnology and Bioengineering, 2020, 117(12):3651-3663.
doi: 10.1002/bit.v117.12
[16]   Gao Y N, Zhang L, Feng X D, et al. Galactosylation of monosaccharide derivatives of glycyrrhetinic acid by UDP-glycosyltransferase GmSGT2 from Glycine max. Journal of Agricultural and Food Chemistry, 2020, 68(32):8580-8588.
doi: 10.1021/acs.jafc.0c03842
[17]   Kersey P J. Plant genome sequences: past, present, future. Current Opinion in Plant Biology, 2019, 48:1-8.
doi: 10.1016/j.pbi.2018.11.001
[18]   Xiao M, Zhang Y, Chen X, et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166(3):122-134.
doi: 10.1016/j.jbiotec.2013.04.004 pmid: 23602801
[19]   Xiao X H, Lu Q W, Liu R X, et al. Genome-wide characterization of the UDP-glycosyltransferase gene family in upland cotton. 3 Biotech, 2019, 9(12):1-12.
doi: 10.1007/s13205-018-1515-5
[20]   Wu B P, Gao L X, Gao J, et al. Genome-wide identification, expression patterns, and functional analysis of UDP glycosyltransferase family in peach (Prunus persica L. Batsch). Frontiers in Plant Science, 2017, 8:389.
[21]   Liu M H, Yang B R, Cheung W F, et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics, 2015, 16(1):1-12.
doi: 10.1186/1471-2164-16-1
[22]   Jayakodi M, Lee S C, Lee Y S, et al. Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biology, 2015, 15:138.
doi: 10.1186/s12870-015-0527-0
[23]   Ono E, Homma Y, Horikawa M, et al. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). The Plant Cell, 2012, 22(8):2856-2871.
doi: 10.1105/tpc.110.074625
[24]   Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 2014, 42(D1):D490-D495.
doi: 10.1093/nar/gkt1178
[25]   Mestrom L, Przypis M, Kowalczykiewicz D, et al. Leloir glycosyltransferases in applied biocatalysis: a multidisciplinary approach. International Journal of Molecular Sciences, 2019, 20(21):5263.
doi: 10.3390/ijms20215263
[26]   Dong T, Hwang I. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signaling & Behavior, 2014, 9(7):e28888.
[27]   Zhou Y Q, Li W C, You W J, et al. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chemical Communications (Cambridge, England), 2018, 54(52):7179-7182.
doi: 10.1039/C7CC09951G
[28]   Brazier-Hicks M, Offen W A, Gershater M C, et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. PNAS, 2007, 104(51):20238-20243.
pmid: 18077347
[29]   George Thompson A M, Iancu C V, Neet K E, et al. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Scientific Reports, 2017, 7:46629.
doi: 10.1038/srep46629 pmid: 28425481
[30]   Zong G N, Fei S, Liu X, et al. Crystal structures of rhamnosyltransferase UGT89C1 from Arabidopsis thaliana reveal the molecular basis of sugar donor specificity for UDP-β-l-rhamnose and rhamnosylation mechanism. The Plant Journal, 2019, 99(2):257-269.
[31]   Hiromoto T, Honjo E, Tamada T, et al. Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Journal of Synchrotron Radiation, 2013, 20(6):894-898.
doi: 10.1107/S0909049513020712
[32]   Liu M Z, Wang D D, Li Y, et al. Crystal structures of the C-glycosyltransferase UGT708C1 from buckwheat provide insights into the mechanism of C-glycosylation. The Plant Cell, 2020, 32(9):2917-2931.
doi: 10.1105/tpc.20.00002
[33]   Zhang M, Li F D, Li K, et al. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. Journal of the American Chemical Society, 2020, 142(7):3506-3512.
doi: 10.1021/jacs.9b12211 pmid: 31986016
[34]   Wang Z L, Gao H M, Wang S, et al. Dissection of the general two-step di-C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. PNAS, 2020, 117(48):30816-30823.
doi: 10.1073/pnas.2012745117
[35]   Shao H, He X Z, Achnine L, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. The Plant Cell, 2005, 17(11):3141-3154.
doi: 10.1105/tpc.105.035055
[36]   Li L N, Modolo L V, Escamilla-Trevino L L, et al. Crystal structure of Medicago truncatula UGT85H2 - insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. Journal of Molecular Biology, 2007, 370(5):951-963.
doi: 10.1016/j.jmb.2007.05.036
[37]   Modolo L V, Li L N, Pan H Y, et al. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. Journal of Molecular Biology, 2009, 392(5):1292-1302.
doi: 10.1016/j.jmb.2009.08.017 pmid: 19683002
[38]   Wetterhorn K M, Newmister S A, Caniza R K, et al. Crystal structure of Os79 (Os04g0206600) from Oryza sativa: a UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry, 2016, 55(44):6175-6186.
pmid: 27715009
[39]   Hsu T M, Welner D H, Russ Z N, et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology, 2018, 14(3):256-261.
doi: 10.1038/nchembio.2552
[40]   Maharjan R, Fukuda Y, Shimomura N, et al. An ambidextrous polyphenol glycosyltransferase PaGT2 from Phytolacca americana. Biochemistry, 2020, 59(27):2551-2561.
doi: 10.1021/acs.biochem.0c00224 pmid: 32525309
[41]   Maharjan R, Fukuda Y, Nakayama T, et al. Crown-ether-mediated crystal structures of the glycosyltransferase PaGT3 from Phytolacca americana. Acta Crystallographica Section D, Structural Biology, 2020, 76(Pt 6):521-530.
[42]   Li J, Qu G, Shang N, et al. Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synthesis and Catalysis, 2021, 2(1):45-53.
doi: 10.1016/j.gresc.2021.01.005
[43]   Yang T, Zhang J Z, Ke D, et al. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nature Communications, 2019, 10:3214.
doi: 10.1038/s41467-019-11154-4
[44]   He J B, Zhao P, Hu Z M, et al. Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis. Angewandte Chemie (International Ed in English), 2019, 58(33):11513-11520.
doi: 10.1002/anie.v58.33
[45]   Offen W, Martinez-Fleites C, Yang M, et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. The EMBO Journal, 2006, 25(6):1396-1405.
doi: 10.1038/sj.emboj.7600970
[46]   Wang X Q. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters, 2009, 583(20):3303-3309.
doi: 10.1016/j.febslet.2009.09.042
[47]   Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2):195-201.
doi: 10.1093/bioinformatics/bti770
[48]   Eswar N, Webb B, Marti-Renom M A, et al. Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 2006, Chapter 5: Unit-Uni5.6.
[49]   Yang J Y, Yan R X, Roy A, et al. The I-TASSER Suite: protein structure and function prediction. Nature Methods, 2015, 12(1):7-8.
[50]   Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(W1):W252-W258.
doi: 10.1093/nar/gku340
[51]   Joshi R, Trinkl J, Haugeneder A, et al. Semirational design and engineering of grapevine glucosyltransferases for enhanced activity and modified product selectivity. Glycobiology, 2019, 29(11):765-775.
doi: 10.1093/glycob/cwz056
[52]   Louveau T, Orme A, Pfalzgraf H, et al. Analysis of two new Arabinosyltransferases belonging to the carbohydrate-active enzyme (CAZY) glycosyl transferase Family1 provides insights into disease resistance and sugar donor specificity. The Plant Cell, 2019, 30(12):3038-3057.
doi: 10.1105/tpc.18.00641
[53]   Xie K B, Dou X X, Chen R D, et al. Two novel fungal phenolic UDP glycosyltransferases from Absidia coerulea and Rhizopus japonicus. Applied and Environmental Microbiology, 2017, 83(8). DOI: 10.1128/aem.03103-16.
doi: 10.1128/aem.03103-16
[54]   Liang D M, Liu J H, Wu H, et al. Glycosyltransferases: mechanisms and applications in natural product development. Chemical Society Reviews, 2015, 44(22):8350-8374.
doi: 10.1039/C5CS00600G
[55]   Lafite P, Marroun S, Coadou G, et al. S-glycosyltransferase UGT74B1 can glycosylate both S- and O-acceptors: mechanistic insights through substrate specificity. Molecular Catalysis, 2019, 479:110631.
doi: 10.1016/j.mcat.2019.110631
[56]   Ardèvol A, Rovira C. Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. Journal of the American Chemical Society, 2015, 137(24):7528-7547.
doi: 10.1021/jacs.5b01156 pmid: 25970019
[57]   Albesa-Jové D, Sainz-Polo M Á, Marina A, et al. Structural snapshots of α-1, 3-galactosyltransferase with native substrates: insight into the catalytic mechanism of retaining glycosyltransferases. Angewandte Chemie International Edition, 2017, 56(47):14853-14857.
doi: 10.1002/anie.201707922
[58]   Hiromoto T, Honjo E, Noda N, et al. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Science, 2015, 24(3):395-407.
doi: 10.1002/pro.2630 pmid: 25556637
[59]   Schmid J, Heider D, Wendel N J, et al. Bacterial glycosyltransferases: challenges and opportunities of a highly diverse enzyme class toward tailoring natural products. Frontiers in Microbiology, 2016, 7:182.
[60]   Cartwright A M, Lim E K, Kleanthous C, et al. A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. Journal of Biological Chemistry, 2008, 283(23):15724-15731.
doi: 10.1074/jbc.M801983200 pmid: 18378673
[61]   Kim H L, Kim A H, Park M B, et al. Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis. BMB Reports, 2013, 46(1):37-40.
doi: 10.5483/BMBRep.2013.46.1.147
[62]   Lu J, Yao L, Li J X, et al. Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rg1 and Rb1 and identification of critical conserved amino acid residues for its function. Journal of Agricultural and Food Chemistry, 2018, 66(36):9446-9455.
doi: 10.1021/acs.jafc.8b02544
[63]   Noguchi A, Horikawa M, Fukui Y, et al. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. The Plant Cell, 2009, 21(5):1556-1572.
doi: 10.1105/tpc.108.063826
[64]   Sawada S, Suzuki H, Ichimaida F, et al. UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers: enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. Journal of Biological Chemistry, 2005, 280(2):899-906.
doi: 10.1074/jbc.M410537200
[65]   Xie L F, Cao Y L, Zhao Z K, et al. Involvement of MdUGT75B1 and MdUGT71B1 in flavonol galactoside/glucoside biosynthesis in apple fruit. Food Chemistry, 2020, 312:126124.
doi: 10.1016/j.foodchem.2019.126124
[66]   Khersonsky O, Lipsh R, Avizemer Z, et al. Automated design of efficient and functionally diverse enzyme repertoires. Molecular Cell, 2018, 72(1): 178-186.e5.
doi: S1097-2765(18)30693-2 pmid: 30270109
[67]   Weng J Y, Chen L L, Cheng Y C, et al. Expression, characterization, and site-directed mutagenesis of UDP-glycosyltransferase UGT88A1 from Arabidopsis thaliana. Bioengineered, 2019, 10(1):142-149.
doi: 10.1080/21655979.2019.1607710
[68]   Singh S, Patel K A, Sonawane P D, et al. Enhanced activity of Withania somnifera family-1 glycosyltransferase (UGT73A16) via mutagenesis. World Journal of Microbiology and Biotechnology, 2018, 34(10):1-11.
doi: 10.1007/s11274-017-2385-4
[69]   Chen L L, Cai R X, Weng J Y, et al. Production of rebaudioside D from stevioside using a UGTSL2 Asn358Phe mutant in a multi-enzyme system. Microbial Biotechnology, 2020, 13(4):974-983.
doi: 10.1111/mbt2.v13.4
[70]   Chang A, Singh S, Phillips G N Jr, et al. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Current Opinion in Biotechnology, 2011, 22(6):800-808.
doi: 10.1016/j.copbio.2011.04.013 pmid: 21592771
[71]   Williams G J, Gantt R W, Thorson J S. The impact of enzyme engineering upon natural product glycodiversification. Current Opinion in Chemical Biology, 2008, 12(5):556-564.
doi: 10.1016/j.cbpa.2008.07.013 pmid: 18678278
[72]   Otten L G, Quax W J. Directed evolution: selecting today's biocatalysts. Biomolecular Engineering, 2005, 22(1-3):1-9.
doi: 10.1016/j.bioeng.2005.02.002
[73]   Esvelt K M, Carlson J C, Liu D R. A system for the continuous directed evolution of biomolecules. Nature, 2011, 472(7344):499-503.
doi: 10.1038/nature09929
[74]   Tee K L, Wong T S. Polishing the craft of genetic diversity creation in directed evolution. Biotechnology Advances, 2013, 31(8):1707-1721.
doi: 10.1016/j.biotechadv.2013.08.021
[75]   Wagner G K, Pesnot T. Glycosyltransferases and their assays. ChemBioChem, 2010, 11(14):1939-1949.
doi: 10.1002/cbic.201000201 pmid: 20672277
[76]   Wu Z L, Ethen C M, Prather B, et al. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology, 2011, 21(6):727-733.
doi: 10.1093/glycob/cwq187
[77]   Li Y J, Hou J, Wang F S, et al. High-throughput assays of leloir-glycosyltransferase reactions: the applications of rYND1 in glycotechnology. Journal of Biotechnology, 2016, 227:10-18.
doi: 10.1016/j.jbiotec.2016.04.003
[78]   Ryu J, Eom M S, Ko W, et al. A fluorescence-based glycosyltransferase assay for high-throughput screening. Bioorganic & Medicinal Chemistry, 2014, 22(8):2571-2575.
doi: 10.1016/j.bmc.2014.02.027
[79]   Aharoni A, Thieme K, Chiu C P C, et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods, 2006, 3(8):609-614.
pmid: 16862135
[80]   Yang G Y, Withers S G. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem, 2009, 10(17):2704-2715.
doi: 10.1002/cbic.v10:17
[81]   Yang G Y, Rich J R, Gilbert M, et al. Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases. Journal of the American Chemical Society, 2010, 132(30):10570-10577.
doi: 10.1021/ja104167y
[82]   Tan Y M, Zhang Y, Han Y B, et al. Directed evolution of an α1, 3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Science Advances, 2019, 5(10): eaaw8451. DOI: 10.1126/sciadv.aaw8451.
doi: 10.1126/sciadv.aaw8451
[83]   Ban L, Pettit N, Li L, et al. Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nature Chemical Biology, 2012, 8(9):769-773.
doi: 10.1038/nchembio.1022
[84]   Zhuang Y, Yang G Y, Chen X H, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metabolic Engineering, 2017, 42:25-32.
doi: S1096-7176(17)30066-6 pmid: 28479190
[85]   Kosík O, Auburn R P, Russell S, et al. Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconjugate Journal, 2010, 27(1):79-87.
doi: 10.1007/s10719-009-9271-8
[86]   Ahsen O V, Voigtmann U, Klotz M, et al. A miniaturized high-throughput screening assay for fucosyltransferase VII. Analytical Biochemistry, 2008, 372(1):96-105.
doi: 10.1016/j.ab.2007.08.029
[87]   Chen X Q, Jou M J, Yoon J. An “off-on” type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. Organic Letters, 2009, 11(10):2181-2184.
doi: 10.1021/ol9004849
[88]   Wongkongkatep J, Miyahara Y, Ojida A, et al. Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angewandte Chemie International Edition, 2006, 45(4):665-668.
doi: 10.1002/(ISSN)1521-3773
[89]   McGraphery K, Schwab W. Comparative analysis of high-throughput assays of family-1 plant glycosyltransferases. International Journal of Molecular Sciences, 2020, 21(6):2208.
doi: 10.3390/ijms21062208
[90]   Choi Y H, Kim J H, Park B S, et al. Solubilization and Iterative Saturation Mutagenesis of α1, 3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnology and Bioengineering, 2016, 113(8):1666-1675.
doi: 10.1002/bit.25944 pmid: 26804479
[1] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[2] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[3] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[4] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[5] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[6] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[7] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.
[8] YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen. De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris[J]. China Biotechnology, 2014, 34(8): 54-60.
[9] GAO Guang-wei, LI Gui-lin, HUANG Jia-yu, LI Da-wei. Study of the Effects of A and C-Domain Glycosylation Sites on the Secretion and Activity of Recombinant Factor Ⅷ[J]. China Biotechnology, 2014, 34(10): 1-7.
[10] LI Guo-kun, GAO Xiang-dong, XU Chen. Advances on Mammalian Cell Expression System[J]. China Biotechnology, 2014, 34(1): 95-100.
[11] LIU Peng, YANG Chun-jiao, YANG Li-rong, XU Gang, WU Jian-ping. Directed Evolution and Application of S-2-CPA Dehalogenase[J]. China Biotechnology, 2012, 32(05): 66-72.
[12] XUN Qi-jing, LIN Ying, QIU Pei-ran, MENG Qing. High Splicing Activity of Ter DnaE-3 Mini-intein through Directed Evolution[J]. China Biotechnology, 2012, 32(05): 79-84.
[13] LIU Jun, CHEN Ming. Natural Product Glycosylation and Aglycone Diversifcation[J]. China Biotechnology, 2012, 32(04): 103-109.
[14] WU Xiu-xiu, LV Xiao-hui, HU Ya-dong, XIE Chun-fang, LIU Da-ling, YAO Dong-sheng. Directed Evolution in vitro of Armillariella tabescens MAN47 β-Mannanase with Higher Thermalstability and Acid Tolerance[J]. China Biotechnology, 2012, 32(03): 83-90.
[15] FAN Li-xia, GAO An-hui, ZHOU Yu-bo, LI Jia. Establishment of a Cell-based High-throughput Screening Model Targeting the IRE1/XBP1 Signaling Pathway[J]. China Biotechnology, 2012, 32(01): 73-80.