Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 109-115    DOI: 10.13523/j.cb.2106033
    
Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes
YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang()
College of Biotechnology and Pharmace utical Engineering, Nanjing Tech University, Nanjing 211816, China
Download: HTML   PDF(829KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a petroleum distillate fuel with high calorific value and low consumption rate, diesel can be matched with the use standard of high-power machinery. It accounts for an increasing proportion in traditional energy. It is widely used in the operation and production of various large-scale equipment. With the increase of diesel consumption, the pollution problem of diesel has begun to drawn attention. Sulfur, as the main pollutant, has higher requirements in the new diesel standard. It is necessary to explore the desulfurization methods and innovate the technology. Traditional hydrodesulfurization has a number of limitations, so a variety of non hydrodesulfurization methods have been developed for desulfurization research, aiming to develop a green desulfurization method with high efficiency and environmental friendliness. This paper mainly summarizes the advantages and disadvantages of various conventional desulfurization methods. The research status and the latest progress of enzyme catalyzed oxidative desulfurization at home and abroad were reviewed. The reaction mechanism and specific research examples of various desulfurization methods were discussed. On this basis, the various methods were summarized and analyzed, and the author’s point of view and the prospect of new desulfurization methods in the future were put forward.



Key wordsDiesel desulfurization      Enzyme catalyzed oxidation      Immobilized enzyme     
Received: 18 June 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Jian-liang ZHU     E-mail: jlzhu@njtech.edu.cn
Cite this article:

YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes. China Biotechnology, 2021, 41(10): 109-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106033     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/109

Fig.1 The Kodama pathway
Fig.2 The 4S pathway
微生物种类 品系 参考文献
红球菌 SHT87 [17]
红球菌、恶臭假单胞菌 IGTS8、CECT 5279 [18] 、[19]
红球菌 USTB-03 [20]
戈登氏菌 RIPI-22 [21]
农杆菌 MC 501 [22]
登氏菌 RIPI90A [23]
类芽孢杆菌 AII-2 [24]
鞘氨醇单胞菌 TZS-7 [25]
Table 1 Bacterial strains producing intracellular desulfurase
[1]   Sadare O, Obazu F, Daramola M. Biodesulfurization of petroleum distillates-current status, opportunities and future challenges. Environments, 2017, 4(4): 85.
doi: 10.3390/environments4040085
[2]   Li S Z, Mominou N, Wang Z W, et al. Ultra-deep desulfurization of gasoline with CuW/TiO2-GO through photocatalytic oxidation. Energy & Fuels, 2016, 30(2): 962-967.
[3]   Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1-2): 1-68.
doi: 10.1016/j.cattod.2010.05.011
[4]   于晖, 黄辰君, 韦进金. 国六柴油机后处理系统试验研究对比. 内燃机与配件, 2020(22): 7-8.
[4]   Yu H, Huang C J, Wei J J. Comparison of experimental research on post-treatment system of state six diesel engine. Internal Combustion Engine & Parts, 2020(22): 7-8.
[5]   Borzenkova N V, Veselova I A, Shekhovtsova T N. Biochemical methods of crude hydrocarbon desulfurization. Biology Bulletin Reviews, 2013, 3(4): 296-311.
doi: 10.1134/S2079086413040026
[6]   Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catalysis Today, 2000, 59(3-4): 423-442.
doi: 10.1016/S0920-5861(00)00308-4
[7]   Ganiyu S A, Ajumobi O O, Lateef S A, et al. Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4, 6-dimethyldibenzothiophene. Chemical Engineering Journal, 2017, 321: 651-661.
doi: 10.1016/j.cej.2017.03.132
[8]   吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展. 化工学报, 2021, 72(1): 276-291.
[8]   Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts. CIESC Journal, 2021, 72(1): 276-291.
[9]   Bryzhin A A, Buryak A K, Gantman M G, et al. Heterogeneous catalysts SILP with phosphotungstic acid for oxidative desulfurization: effect of ionic liquid. Kinetics and Catalysis, 2020, 61(5): 775-785.
doi: 10.1134/S0023158420050018
[10]   张晓凡, 张敬然, 朱艺佳. 氧化法脱除柴油硫化物的研究进展. 现代盐化工, 2018, 45(1): 11-12.
[10]   Zhang X F, Zhang J R, Zhu Y J. Research progress on oxidation of diesel sulfide. Modern Salt and Chemical Industry, 2018, 45(1): 11-12.
[11]   Said S, Abdelrahman A A. Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by Sol-gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound. Journal of Sol-Gel Science and Technology, 2020, 95(2): 308-320.
doi: 10.1007/s10971-020-05332-w
[12]   Porto B, Maass D, Oliveira J V, et al. Heavy gas oil biodesulfurization using a low-cost bacterial consortium. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2359-2363.
[13]   Sohrabi M, Kamyab H, Janalizadeh N, et al. Bacterial desulfurization of organic sulfur compounds exist in fossil fuels. Journal of Pure & Applied Microbiology, 2012, 6(2): 717-729.
[14]   Martínez I, El-Said Mohamed M, Santos V E, et al. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. Journal of Biotechnology, 2017, 262: 47-55.
doi: S0168-1656(17)31644-9 pmid: 28947364
[15]   Martinez I, Santos V E, Alcon A, et al. Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochemistry, 2015, 50(1): 119-124.
doi: 10.1016/j.procbio.2014.11.001
[16]   Chen S Q, Zhao C C, Liu Q Y, et al. Thermophilic biodesulfurization and its application in oil desulfurization. Applied Microbiology and Biotechnology, 2018, 102(21): 9089-9103.
doi: 10.1007/s00253-018-9342-5
[17]   Davoodi-Dehaghani F, Vosoughi M, Ziaee A A. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresource Technology, 2010, 101(3): 1102-1105.
doi: 10.1016/j.biortech.2009.08.058 pmid: 19819129
[18]   Caro A, Boltes K, Letón P, et al. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. Chemosphere, 2008, 73(5): 663-669.
doi: 10.1016/j.chemosphere.2008.07.031
[19]   Calzada J, Alcon A, Santos V E, et al. Extended kinetic model for DBT desulfurization using Pseudomonas putida CECT5279 in resting cells. Biochemical Engineering Journal, 2012, 66: 52-60.
doi: 10.1016/j.bej.2012.04.018
[20]   Yan H, Sun X D, Xu Q Q, et al. Effects of nicotinamide and riboflavin on the biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03. Journal of Environmental Sciences, 2008, 20(5): 613-618.
doi: 10.1016/S1001-0742(08)62102-6
[21]   Rashtchi M, Mohebali G H, Akbarnejad M M, et al. Analysis of biodesulfurization of model oil system by the Bacterium, strain RIPI-22. Biochemical Engineering Journal, 2006, 29(3): 169-173.
doi: 10.1016/j.bej.2005.08.034
[22]   Constantí M, Giralt J, Bordons A. Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture. Enzyme and Microbial Technology, 1996, 19(3): 214-219.
doi: 10.1016/0141-0229(95)00236-7
[23]   Shavandi M, Sadeghizadeh M, Zomorodipour A, et al. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresource Technology, 2009, 100(1): 475-479.
doi: 10.1016/j.biortech.2008.06.011 pmid: 18653330
[24]   Onaka T, Konishi J, Ishii Y, et al. Desulfurization characteristics of thermophilic Paenibacillus sp strain A11-2 against asymmetrically alkylated dibenzothiophenes. Journal of Bioscience and Bioengineering, 2001, 92(2): 193-196.
pmid: 16233084
[25]   Lu J, Nakajima-Kambe T, Shigeno T, et al. Biodegradation of dibenzothiophene and 4, 6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7. Journal of Bioscience and Bioengineering, 1999, 88(3): 293-299.
pmid: 16232614
[26]   Adlakha J, Singh P, Ram S K, et al. Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp IITR100. Fuel, 2016, 184: 761-769.
doi: 10.1016/j.fuel.2016.07.021
[27]   Nassar H N, Abu Amr S S, El-Gendy N S. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research, 2021, 28(7): 8102-8116.
doi: 10.1007/s11356-020-11090-7
[28]   Dinamarca M A, Ibacache-Quiroga C, Baeza P, et al. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresource Technology, 2010, 101(7): 2375-2378.
doi: 10.1016/j.biortech.2009.11.086
[29]   Karimi A M, Sadeghi S, Salimi F. Biodesulphurization of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecological Chemistry and Engineering S, 2017, 24(3): 371-379.
doi: 10.1515/eces-2017-0024
[30]   Ayala M, Verdin J, Vazquez-Duhalt R. The prospects for peroxidase-based biorefining of petroleum fuels. Biocatalysis and Biotransformation, 2007, 25(2-4): 114-129.
doi: 10.1080/10242420701379015
[31]   Montiel C, Terrés E, Domínguez J M, et al. Immobilization of chloroperoxidase on silica-based materials for 4, 6-dimethyl dibenzothiophene oxidation. Journal of Molecular Catalysis B: Enzymatic, 2007, 48(3-4): 90-98.
doi: 10.1016/j.molcatb.2007.06.012
[32]   Aburto P, Zuéiga K, Campos-Terán J, et al. Quantitative analysis of sulfur in diesel by enzymatic oxidation, steady-state fluorescence, and linear regression analysis. Energy & Fuels, 2014, 28(1): 403-408.
doi: 10.1021/ef400964q
[33]   Bhasarkar J, Borah A J, Goswami P, et al. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresource Technology, 2015, 196: 88-98.
doi: 10.1016/j.biortech.2015.07.063 pmid: 26231128
[34]   Singh M P, Kumar M, Kalsi W R, et al. Method for bio-oxidative desulfurization of liquid hydrocarbon fuels and product thereof: United States, 20090217571. 2009-09-03.
[35]   Terrés E, Montiel M, Le Borgne S, et al. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4, 6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions. Biotechnology Letters, 2008, 30(1): 173-179.
doi: 10.1007/s10529-007-9512-5
[36]   Juarez-Moreno K, Díaz de León J N, Zepeda T A, et al. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115: 90-95.
doi: 10.1016/j.molcatb.2015.02.004
[37]   Aburto J, Ayala M, Bustos-Jaimes I, et al. Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous and Mesoporous Materials, 2005, 83(1-3): 193-200.
doi: 10.1016/j.micromeso.2005.04.008
[38]   Ayala M, Hernandez-Lopez E L, Perezgasga L, et al. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92(1): 245-249.
doi: 10.1016/j.fuel.2011.06.067
[39]   Ryu K, Heo J, Yoo I K. Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrome C. Biotechnology Letters, 2002, 24(2): 143-146.
doi: 10.1023/A:1013806830105
[40]   Ansari F, Grigoriev P, Libor S, et al. DBT degradation enhancement by decoratingRhodococcus erythropolisIGST8 with magnetic Fe3O4 nanoparticles. Biotechnology and Bioengineering, 2009, 102(5): 1505-1512.
doi: 10.1002/bit.22161 pmid: 19012265
[41]   Shan G B, Xing J M, Zhang H Y, et al. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Applied and Environmental Microbiology, 2005, 71(8): 4497-4502.
doi: 10.1128/AEM.71.8.4497-4502.2005
[42]   Li Y G, Gao H S, Li W L, et al. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresource Technology, 2009, 100(21): 5092-5096.
doi: 10.1016/j.biortech.2009.05.064
[43]   Yazbeck D R, Martinez C A, Hu S H, et al. Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron: Asymmetry, 2004, 15(18): 2757-2763.
doi: 10.1016/j.tetasy.2004.07.050
[44]   Gupta N, Roychoudhury P K, Deb J K. Biotechnology of desulfurization of diesel: prospects and challenges. Applied Microbiology and Biotechnology, 2005, 66(4): 356-366.
doi: 10.1007/s00253-004-1755-7
[45]   Alcalde M, Ferrer M, Plou F J, et al. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology, 2006, 24(6): 281-287.
pmid: 16647150
[1] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[2] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[3] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[4] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[5] LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers[J]. China Biotechnology, 2015, 35(11): 105-113.
[6] HUANG Zhe Tao ZHANG Zhang-lin LIN. Immobilization of β-glucosidase with nano SiO2 and its application in soybean isoflavone hydrolysis in two-phase-system[J]. China Biotechnology, 2008, 28(6): 71-76.
[7] . Cross-linked Enzyme Aggregates and advances[J]. China Biotechnology, 2006, 26(0): 0-0.