Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 32-40    DOI: 10.13523/j.cb.2312102
生物经济核心产业专题     
生命健康科技领域发展态势*
许丽,杨若南,王玥,施慧琳,李祯祺,靳晨琦,李伟,徐萍**()
中国科学院上海营养与健康研究所 中国科学院上海生命科学信息中心 上海 200031
Analysis of the Development Trends of Life and Health Sciences and Technology
Li XU,Ruonan YANG,Yue WANG,Huilin SHI,Zhenqi LI,Chenqi JIN,Wei LI,Ping XU**()
Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health,Chinese Academy of Sciences, Shanghai 200031, China
 全文: PDF(1082 KB)   HTML
摘要:

生命健康科技领域是新一轮科技革命和产业变革中最有望实现革命性突破的重点领域之一。随着学科和技术会聚融合,生命健康科技显现出了新的发展趋势,衍生了新学科、新方向、新前沿,创造了新的产业细分领域和增长点。近几年,生命健康科技领域创新活跃,基因编辑、合成生物学、生命组学、再生医学、类器官等前沿领域的重大成果密集涌现。在深入分析生命健康科技领域当前值得特别关注的发展趋势及前沿方向的基础上,展望生命健康科技领域未来发展前景并提出重点布局方向,以期为生命健康领域科技创新发展提供参考。

关键词: 生命健康基因编辑合成生物学生命组学类器官    
Abstract:

Life and health sciences and technology is one of the key areas that are most expected to achieve revolutionary breakthroughs in the new round of scientific and technological revolution and industrial transformation. Through the convergence and integration of disciplines and technologies, it has shown a new development trend, givenrise to new disciplines, new directions, and new frontiers, and created new subdivisions and growth points in the industry. In recent years, innovation in the field of life and health sciences and technology has been active, and major achievements in frontier areas such as gene editing, synthetic biology, life omics, regenerative medicine, and organoids have been intensively developed. Based on the in-depth analysis of the current development trends and frontier directions in the field of life and health sciences and technology, its future development prospects are discussed and the key layout direction is proposed to provide reference for the development of life and health sciences and technology innovation.

Key words: Life health    Gene editing    Synthetic biology    Life omics    Organoids
收稿日期: 2023-12-26 出版日期: 2024-02-04
ZTFLH:  Q-1  
基金资助: *国家自然科学基金(L2124037)
通讯作者: ** 电子信箱:xuping@sinh.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许丽
杨若南
王玥
施慧琳
李祯祺
靳晨琦
李伟
徐萍

引用本文:

许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.

Li XU, Ruonan YANG, Yue WANG, Huilin SHI, Zhenqi LI, Chenqi JIN, Wei LI, Ping XU. Analysis of the Development Trends of Life and Health Sciences and Technology. China Biotechnology, 2024, 44(1): 32-40.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312102        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/32

[1] Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.
doi: 10.1126/science.abj6987 pmid: 35357919
[2] Hallast P, Ebert P, Loftus M, et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature, 2023, 621(7978): 355-364.
doi: 10.1038/s41586-023-06425-6
[3] Liao W W, Asri M, Ebler J, et al. A draft human pangenome reference. Nature, 2023, 617(7960): 312-324.
doi: 10.1038/s41586-023-05896-x
[4] Brinkerhoff H, Kang A S W, Liu J Q, et al. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science, 2021, 374(6574): 1509-1513.
doi: 10.1126/science.abl4381
[5] Wang K F, Zhang S Y, Zhou X, et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nature Methods, 2023, DOI: 10.1038/s41592-023-02021-8.
doi: 10.1038/s41592-023-02021-8
[6] Mund A, Coscia F, Kriston A, et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nature Biotechnology, 2022, 40(8): 1231-1240.
doi: 10.1038/s41587-022-01302-5 pmid: 35590073
[7] Rappez L, Stadler M, Triana S, et al. SpaceM reveals metabolic states of single cells. Nature Methods, 2021, 18(7): 799-805.
doi: 10.1038/s41592-021-01198-0 pmid: 34226721
[8] Deng Y X, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science, 2022, 375(6581): 681-686.
doi: 10.1126/science.abg7216
[9] Deng Y X, Bartosovic M, Ma S, et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature, 2022, 609(7926): 375-383.
doi: 10.1038/s41586-022-05094-1
[10] Payne A C, Chiang Z D, Reginato P L, et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science, 2021, 371(6532): eaay3446.
doi: 10.1126/science.aay3446
[11] Zhang D, Deng Y X, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature, 2023, 616(7955): 113-122.
doi: 10.1038/s41586-023-05795-1
[12] Vicari M, Mirzazadeh R, Nilsson A, et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nature Biotechnology, 2023, DOI: 10.1038/s41587-023-01937-y.
doi: 10.1038/s41587-023-01937-y
[13] Ben-Chetrit N, Niu X, Swett A D, et al. Integration of whole transcriptome spatial profiling with protein markers. Nature Biotechnology, 2023, 41(6): 788-793.
doi: 10.1038/s41587-022-01536-3 pmid: 36593397
[14] Wolf J, Rasmussen D K, Sun Y J, et al. Liquid-biopsy proteomics combined with AI identifies cellular drivers of eye aging and disease in vivo. Cell, 2023, 186(22): 4868-4884, e12.
doi: 10.1016/j.cell.2023.09.012
[15] Vermeulen C, Pagès-Gallego M, Kester L, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature, 2023, 622(7984): 842-849.
doi: 10.1038/s41586-023-06615-2
[16] Allesøe R L, Lundgaard A T, Hernández Medina R, et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nature Biotechnology, 2023, 41(3): 399-408.
doi: 10.1038/s41587-022-01520-x pmid: 36593394
[17] Li J M, Xiong M Z, Fu X H, et al. Determining a multimodal aging clock in a cohort of Chinese women. Med, 2023, 4(11): 825-848, e13.
doi: 10.1016/j.medj.2023.06.010
[18] Shalon D, Culver R N, Grembi J A, et al. Profiling the human intestinal environment under physiological conditions. Nature, 2023, 617(7961): 581-591.
doi: 10.1038/s41586-023-05989-7
[19] Thuronyi B W, Koblan L W, Levy J M, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37(9): 1070-1079.
doi: 10.1038/s41587-019-0193-0 pmid: 31332326
[20] Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471.
doi: 10.1038/nature24644
[21] Cox D B T, Gootenberg J S, Abudayyeh O O, et al. RNA editing with CRISPR-Cas13. Science, 2017, 358(6366): 1019-1027.
doi: 10.1126/science.aaq0180 pmid: 29070703
[22] Abudayyeh O O, Gootenberg J S, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science, 2019, 365(6451): 382-386.
doi: 10.1126/science.aax7063 pmid: 31296651
[23] Jiang T T, Zhang X O, Weng Z P, et al. Deletion and replacement of long genomic sequences using prime editing. Nature Biotechnology, 2022, 40(2): 227-234.
doi: 10.1038/s41587-021-01026-y
[24] Choi J, Chen W, Suiter C C, et al. Precise genomic deletions using paired prime editing. Nature Biotechnology, 2022, 40(2): 218-226.
doi: 10.1038/s41587-021-01025-z
[25] Yuan Q C, Gao X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13(1): 2771.
doi: 10.1038/s41467-022-30514-1 pmid: 35589728
[26] Anzalone A V, Gao X D, Podracky C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40(5): 731-740.
doi: 10.1038/s41587-021-01133-w
[27] Vertex. Vertex and CRISPR therapeutics announce authorization of the first CRISPR/Cas9 gene-edited therapy, CASGEVYTM (exagamglogene autotemcel), by the United Kingdom MHRA for the treatment of sickle cell disease and transfusion-dependent beta thalassemia. [2023-11-16]. https://news.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-announce-authorization-first.
[28] Thi Nhu Thao T, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature, 2020, 582(7813): 561-565.
doi: 10.1038/s41586-020-2294-9
[29] Hsieh C L, Goldsmith J A, Schaub J M, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 2020, 369(6510): 1501-1505.
doi: 10.1126/science.abd0826
[30] Cao L X, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370(6515): 426-431.
doi: 10.1126/science.abd9909
[31] Stokes J M, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4): 688-702, e13.
doi: S0092-8674(20)30102-1 pmid: 32084340
[32] Liu G, Catacutan D B, Rathod K, et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nature Chemical Biology, 2023, 19(11): 1342-1350.
doi: 10.1038/s41589-023-01349-8
[33] Hie B L, Shanker V R, Xu D, et al. Efficient evolution of human antibodies from general protein language models. Nature Biotechnology, 2023,DOI: 10.1038/s41587-023-01763-2.
doi: 10.1038/s41587-023-01763-2
[34] Quijano-Rubio A, Yeh H W, Park J, et al. De novo design of modular and tunable protein biosensors. Nature, 2021, 591(7850): 482-487.
doi: 10.1038/s41586-021-03258-z
[35] Herud-Sikimić O, Stiel A C, Kolb M, et al. A biosensor for the direct visualization of auxin. Nature, 2021, 592(7856): 768-772.
doi: 10.1038/s41586-021-03425-2
[36] Srinivasan P, Smolke C D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature, 2020, 585(7826): 614-619.
doi: 10.1038/s41586-020-2650-9
[37] Zhang J, Hansen L G, Gudich O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609(7926): 341-347.
doi: 10.1038/s41586-022-05157-3
[38] Jan M, Scarfò I, Larson R C, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Science Translational Medicine, 2021, 13(575): eabb6295.
doi: 10.1126/scitranslmed.abb6295
[39] Hernandez-Lopez R A, Yu W, Cabral K A, et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science, 2021, 371(6534): 1166-1171.
doi: 10.1126/science.abc1855 pmid: 33632893
[40] Kreitz J, Friedrich M J, Guru A, et al. Programmable protein delivery with a bacterial contractile injection system. Nature, 2023, 616(7956): 357-364.
doi: 10.1038/s41586-023-05870-7
[41] Canale F P, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature, 2021, 598(7882): 662-666.
doi: 10.1038/s41586-021-04003-2
[42] Nick J A, Dedrick R M, Gray A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874, e12.
doi: 10.1016/j.cell.2022.04.024
[43] Chen Y E, Bousbaine D, Veinbachs A, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science, 2023, 380(6641): 203-210.
doi: 10.1126/science.abp9563 pmid: 37053311
[44] Lin Z M, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379(6637): 1123-1130.
doi: 10.1126/science.ade2574 pmid: 36927031
[45] Bileschi M L, Belanger D, Bryant D H, et al. Using deep learning to annotate the protein universe. Nature Biotechnology, 2022, 40(6): 932-937.
doi: 10.1038/s41587-021-01179-w
[46] Belanger D, Colwell L J. Hallucinating functional protein sequences. Nature Biotechnology, 2023, 41(8): 1073-1074.
doi: 10.1038/s41587-022-01634-2
[47] Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2016239118.
[48] Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science, 2022, 378(6615): 49-56.
doi: 10.1126/science.add2187 pmid: 36108050
[49] Wang J, Lisanza S, Juergens D, et al. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604): 387-394.
doi: 10.1126/science.abn2100 pmid: 35862514
[50] Wicky B I M, Milles L F, Courbet A, et al. Hallucinating symmetric protein assemblies. Science, 2022, 378(6615): 56-61.
doi: 10.1126/science.add1964 pmid: 36108048
[51] FDA. Artificial intelligence and machine learning (AI/ML)-enabled medical devices. [2023-10-19]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_medium=email&utm_source=govdelivery#resources.
[52] Bouffi C, Wikenheiser-Brokamp K A, Chaturvedi P, et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nature Biotechnology, 2023, 41(6): 824-831.
doi: 10.1038/s41587-022-01558-x pmid: 36702898
[53] Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10): 1740-1757, e8.
doi: 10.1016/j.stem.2021.07.010 pmid: 34407456
[54] Amadei G, Handford C E, Qiu C X, et al. Embryomodel completes gastrulation to neurulation and organogenesis. Nature, 2022, 610(7930): 143-153.
doi: 10.1038/s41586-022-05246-3
[55] Esfahani M S, Hamilton E G, Mehrmohamadi M, et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nature Biotechnology, 2022, 40(4): 585-597.
doi: 10.1038/s41587-022-01222-4 pmid: 35361996
[56] Fedyuk V, Erez N, Furth N, et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nature Biotechnology, 2023, 41(2): 212-221.
doi: 10.1038/s41587-022-01447-3
[57] Mougiakakos D, Krönke G, Völkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. The New England Journal of Medicine, 2021, 385(6): 567-569.
doi: 10.1056/NEJMc2107725 pmid: 34347960
[58] Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583(7814): 127-132.
doi: 10.1038/s41586-020-2403-9
[59] Rurik J G, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375(6576): 91-96.
doi: 10.1126/science.abm0594 pmid: 34990237
[60] Williams J Z, Allen G M, Shah D, et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 2020, 370(6520): 1099-1104.
doi: 10.1126/science.abc6270 pmid: 33243890
[61] Lajoie M J, Boyken S E, Salter A I, et al. Designed protein logic to target cells with precise combinations of surface antigens. Science, 2020, 369(6511): 1637-1643.
doi: 10.1126/science.aba6527 pmid: 32820060
[62] Tousley A M, Rotiroti M C, Labanieh L, et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature, 2023, 615(7952): 507-516.
doi: 10.1038/s41586-023-05778-2
[63] Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology, 2022, 40(7): 1042-1055.
doi: 10.1038/s41587-022-01219-z pmid: 35241836
[64] Baloh R H, Johnson J P, Avalos P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nature Medicine, 2022, 28(9): 1813-1822.
doi: 10.1038/s41591-022-01956-3 pmid: 36064599
[65] Fumagalli F, Calbi V, Sora M G N, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/ 2 trial and expanded access. Lancet, 2022, 399(10322): 372-383.
doi: 10.1016/S0140-6736(21)02017-1
[66] Dolgin E. Diabetes cell therapies take evasive action. Nature Biotechnology, 2022, 40(3): 291-295.
doi: 10.1038/s41587-022-01246-w
[67] Qiu Y C, O’Neill N, Maffei B, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science, 2022, 378(6619): 523-532.
doi: 10.1126/science.abq6656 pmid: 36378958
[68] Chen Y F, Hong Z X, Wang J Y, et al. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson’s disease model. Cell, 2023, 186(24): 5394-5410, e18.
doi: 10.1016/j.cell.2023.10.004
[69] Squair J W, Milano M, de Coucy A, et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science, 2023, 381(6664): 1338-1345.
doi: 10.1126/science.adi6412 pmid: 37733871
[70] Intellia Therapeutics. Intellia therapeutics announces FDA clearance of investigational new drug (IND) application to initiate a pivotal phase 3 trial of NTLA-2001 for the treatment of transthyretin (ATTR) amyloidosis with cardiomyopathy. [2023-10-18]. https://www.intelliatx.com/our-pipeline.
[71] Desai A S, Webb D J, Taubel J, et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. The New England Journal of Medicine, 2023, 389(3): 228-238.
doi: 10.1056/NEJMoa2208391 pmid: 37467498
[72] Mummery C J, Börjesson-Hanson A, Blackburn D J, et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nature Medicine, 2023, 29(6): 1437-1447.
doi: 10.1038/s41591-023-02326-3
[73] Park J S, Gazzaniga F S, Wu M, et al. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature, 2023, 617(7960): 377-385.
doi: 10.1038/s41586-023-06026-3
[74] Diwakar D, Dzutsev Amiran K, McCulloch John A, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science, 2021, 371(6529): 595-602.
doi: 10.1126/science.abf3363 pmid: 33542131
[75] Baruch E N, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 2021, 371(6529): 602-609.
doi: 10.1126/science.abb5920 pmid: 33303685
[76] Routy B, Lenehan J G, Miller W H Jr, et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nature Medicine, 2023, 29(8): 2121-2132.
doi: 10.1038/s41591-023-02453-x pmid: 37414899
[77] Zhao W S, Lei J, Ke S B, et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase II trial (RENMIN-215). eClinicalMedicine, 2023, 66: 102315.
doi: 10.1016/j.eclinm.2023.102315
[78] Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell, 2022, 185(16): 2879-2898.e24.
doi: 10.1016/j.cell.2022.07.003 pmid: 35931020
[79] Ichikawa M, Nakamoto N, Kredo-Russo S, et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nature Communications, 2023, 14(1): 3261.
doi: 10.1038/s41467-023-39029-9
[80] Kviatcovsky D, Valdés-Mas R, Federici S, et al. Phage therapy in noncommunicable diseases. Science, 2023, 382(6668): 266-267.
doi: 10.1126/science.adh2718 pmid: 37856612
[81] Ni Y Q, Qian L L, Siliceo S L, et al. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metabolism, 2023, 35(9): 1530-1547, e8.
doi: 10.1016/j.cmet.2023.08.002 pmid: 37673036
[82] Chen R Y, Mostafa I, Hibberd M C, et al. A microbiota-directed food intervention for undernourished children. The New England Journal of Medicine, 2021, 384(16): 1517-1528.
doi: 10.1056/NEJMoa2023294 pmid: 33826814
[1] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[2] 李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.
[3] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[4] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[5] 唐子慧, 钟畅, 段艳丽, 马瑞堉, 周平. 骨类器官的构建及应用进展*[J]. 中国生物工程杂志, 2023, 43(8): 11-19.
[6] 朱翔, 张静引, 王丽蕊. 人源肝脏类器官的研究及应用进展[J]. 中国生物工程杂志, 2023, 43(8): 20-29.
[7] 石瑾, 刘柯, 丁军颖. 肺类器官模型在感染性肺系病研究中的应用及展望*[J]. 中国生物工程杂志, 2023, 43(8): 30-37.
[8] 辛圆, 田开仁, 乔建军, 财音青格乐. 基于CRISPR/Cas系统的基因编辑工具及其改进策略*[J]. 中国生物工程杂志, 2023, 43(8): 72-85.
[9] 王玥, 施慧琳, 靳晨琦, 徐萍. 类器官领域发展现状及展望*[J]. 中国生物工程杂志, 2023, 43(8): 1-10.
[10] 李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.
[11] 冯雪娇, 衡超, 于新语, 王俊姝. 基因治疗行业市场分析及展望*[J]. 中国生物工程杂志, 2023, 43(6): 102-112.
[12] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[13] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[14] 杨镒婴, 李晓乐, 李子龙, 李秋园, 陈伟, 尹守亮. 反选标记法在微生物基因敲除中的应用*[J]. 中国生物工程杂志, 2023, 43(4): 101-111.
[15] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.