Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 19-31    DOI: 10.13523/j.cb.2312103
生物经济核心产业专题     
时空组学技术新进展*
姜宇佳1,荆泽华1,冯静1,徐讯1,2,**()
1 杭州华大生命科学研究院 杭州 310030
2 深圳华大生命科学研究院 深圳 518083
Recent Advances in Spatiotemporal Omics Technology
Yujia JIANG1,Zehua JING1,Jing FENG1,Xun XU1,2,**()
1 BGI Research, Hangzhou 310030, China
2 BGI Research, Shenzhen 518083, China
 全文: PDF(1703 KB)   HTML
摘要:

时空组学技术(spatiotemporal omics technology)是对组织或细胞在连续的时间和空间维度内观测或检测生命多组学表达和调控特征的技术统称,可以在亚细胞、细胞、组织、器官、个体、群体和进化水平解析由遗传分子决定的生命现象本质。多组学主要包括基因组学、表观组学、转录组学和蛋白质组学。其中,空间转录组学(spatial transcriptomics)近年来发展迅猛,应用较为广泛。对时空组学技术的发展历程、技术原理以及物理极限进行介绍,概述其整体分析流程和经典时空算法,总结时空组学为发育生物学、复杂疾病、神经科学、植物学领域带来的重大突破,同时提出时空组学的技术迭代、分析方法开发、实验设计环节面临的挑战以及对未来发展的展望。

关键词: 时空组学空间转录组发育生物学复杂疾病神经科学植物学    
Abstract:

Spatiotemporal omics technology is a collective term for technologies that observe or detect the multi-omics expression and regulatory features of life in tissues or cells in successive temporal and spatial dimensions, which enables analysis of the nature of life phenomena determined by genetic molecules at the subcellular, cellular, tissue, organ, individual, population, and evolutionary levels. Multi-omics mainly include genomics, epigenomics, transcriptomics and proteomics. Among them, spatial transcriptomics has been developing rapidly in recent years and is more widely used. Based on the principles, spatiotemporal omics techniques can be categorized into imaging-based techniques and sequencing-based techniques. Imaging-based technologies include spatial in situ hybridization technologies(SISH), such as smFISH, seqFISH and MERFISH, and spatial in situ sequencing technologies(SISS), such as ISS, FISSEQ and STARmap. Sequencing-based technologies include spatial in situ microsection(SISM) technologies such as tomo-seq, Geo-seq and DSP, and spatial in situ barcoding(SISB) technologies such as ST, Stereo-seq and seq-Scope technologies. The performance difference between different technologies is mainly reflected in the number of captured genes, spatial resolution, capture area, etc. Imaging-based technologies generally have higher spatial resolution, which can reach the level of cellular and subcellular resolution. However, because of the physical limitations brought by optical crowding and experimental complexity, the number and types of genes captured by the target are limited and difficult to improve. Sequencing-based technologies use polyT to specifically capture polyA, which enables unbiased capture at the whole transcriptome level and greatly improves the variety and number of captured genes. However, due to the mechanical limitations received from microsection and capture barcode planting, their spatial resolution generally falls short of single-cell resolution and is mostly a multicellular region with a mixture of multiple cells. Currently, benefiting from the nanoscale realization of nucleic acid binding site spacing on the surface of sequencing microarrays, Stereo-seq and seq-Scope have for the first time achieved nucleic acid capture at subcellular resolution and cell segmentation through integration with cellular staining profiles, which can truly achieve spatial single-cell resolution. The rapid development of spatial transcriptome technology has laid the foundation for the development of spatiotemporal multi-omics technology. Based on the existing experimental flow of spatial transcriptome or capture chip, through the transformation of the capture target and the supporting experimental flow, spatial genome, epigenome and proteome technologies have appeared one after another, and are gradually developing towards the ability to detect multiple histologists simultaneously in a single slice. The wide application of spatiotemporal genomics technologies has brought many challenges and targeted solutions for data analysis. Some of the more important current analysis methods include cell segmentation, spatial domain identification, and cell interactions. Significant challenges remain in the future for de-batching and integrative analysis of large amounts of data. The spatial information of nucleic acids and cells provided by spatiotemporal genomics can be constructed to detect macroscopic life activities and identify microscopic regulatory information at subcellular, cellular, tissue, organ, and holistic levels in both temporal and spatial dimensions. This has led to breakthroughs in important life science research areas such as developmental biology, complex diseases, neuroscience, and botany. Here, the development history of spatiotemporal omics technology, the characteristics of technical principles and physical limits are summarized, and the overall analysis process of spatiotemporal omics and classical spatiotemporal algorithms are outlined. The breakthroughs brought by spatiotemporal omics to the fields of developmental biology, complex diseases, neuroscience, and botany are summarized. The challenges of spatiotemporal omics in terms of technology iteration, analytical method development, and experimental design are also presented, as well as the outlook for the future development of spatiotemporal omics.

Key words: Spatiotemporal omics    Spatial transcriptomics    Developmental biology    Complex diseases    Neurosciences    Botany
收稿日期: 2023-12-29 出版日期: 2024-02-04
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2022YFC3400400)
通讯作者: ** 电子信箱:xuxun@genomics.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姜宇佳
荆泽华
冯静
徐讯

引用本文:

姜宇佳, 荆泽华, 冯静, 徐讯. 时空组学技术新进展*[J]. 中国生物工程杂志, 2024, 44(1): 19-31.

Yujia JIANG, Zehua JING, Jing FENG, Xun XU. Recent Advances in Spatiotemporal Omics Technology. China Biotechnology, 2024, 44(1): 19-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312103        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/19

图1  时空组学技术发展时间线
图2  时空组学技术原理
技术名称 多组学领域 同测序 发表期刊及发表年份
HiM 基因组和转录组 Molecular Cell, 2019
SABER 基因组和转录组 Nature Methods, 2019
DNA Microscopy 基因组和转录组 Cell, 2019
MERFISH 基因组和转录组 Cell, 2019
DNA seqFish+ 基因组 Nature, 2021
IGS 基因组 Science, 2021
Slide-DNA-seq 基因组 Nature, 2021
OligoFISSEQ 基因组 Nature Methods, 2022
MISAR-seq 转录组和表观组 Nature Methods, 2023
Epigenomic MERFISH 表观组 Cell, 2022
Spatial-CUT&Tag 表观组 Science, 2022
Spatial-ATAC-seq 表观组 Nature, 2022
Spatial ATAC 表观组 Nature Biotechnology, 2023
IMC 转录组和蛋白组 Cell Systems, 2018
DSP 转录组和蛋白组 Nature Biotechnology, 2020
DBiT-seq 转录组和蛋白组 Cell, 2020
MOSAICA 转录组和蛋白组 Nature Communication, 2021
SMI 转录组和蛋白组 Nature Biotechnology, 2022
SM-Omics 转录组和蛋白组 Nature Communication, 2022
STARmap PLUS 转录组和蛋白组 Nature Neuroscience, 2023
SPOTS 转录组和蛋白组 Nature Biotechnology, 2023
Spatial-CITE-seq 转录组和蛋白组 Nature Biotechnology, 2023
SMA 转录组和蛋白组 Nature Biotechnology, 2023
CAD-HCR 蛋白组 Science Advances, 2022
表1  空间多组学技术
分析方法 领域/目标 算法类型 发表期刊及发表年份
StarDist 高分辨率空间组学,细胞分割 神经网络 CVPR, 2018
DeepCell 高分辨率空间组学,细胞分割 神经网络 Nature Methods, 2021
CellPose 高分辨率空间组学,细胞分割 神经网络 Nature Methods, 2021
Baysor 高分辨率空间组学,细胞分割 空间几何 Nature Biotechnology, 2021
SSAM 高分辨率空间组学,细胞分割 空间几何 Nature Communication, 2021
ClusterMap 高分辨率空间组学,细胞分割 空间几何 Nature Communication, 2021
SCS 高分辨率空间组学,细胞分割 神经网络 Nature Methods, 2023
Cell2location 低分辨率空间组学,解卷积 贝叶斯模型 Nature Biotechnology, 2022
Spotlight 低分辨率空间组学,解卷积 非负矩阵分解 Nucleic Acids Research, 2021
Tangram 低分辨率空间组学,解卷积 神经网络 Nature Methods, 2021
CARD 低分辨率空间组学,解卷积 自回归模型 Nature Biotechnology, 2022
Lovain 聚类分析,空间域识别 社区聚类算法 Journal of Statistical Mechanics-Theory and Experiment, 2008
Leiden 聚类分析,空间域识别 社区聚类算法 Scientific Reports, 2019
SpatialDE 空间特征基因识别 空间统计学模型 Nature Methods, 2018
SPARK-X 空间特征基因识别 空间统计学模型 Genome Biology, 2021
nnSVG 空间特征基因识别 空间统计学模型 Nature Communication, 2023
HotSpot 空间特征基因,空间共表达识别 空间统计学模型 Cell Systems, 2021
SpaGCN 聚类分析,空间域识别 神经网络 Nature Methods, 2021
STAGATE 聚类分析,空间域识别 神经网络 Nature Communication, 2022
SpatialPCA 降维、聚类分析,空间域识别 空间统计学模型 Nature Communication, 2022
BayesSpace 聚类分析,空间域识别 空间统计学模型 Nature Biotechnology, 2021
MISTy 空间细胞互作 空间统计学模型 Genome Biology, 2022
DIALOGUE 空间细胞互作 空间统计学模型 Nature Biotechnology, 2022
NCEM 空间细胞互作 空间统计学模型 Nature Biotechnology, 2022
COMMOT 空间细胞互作 最优传输模型 Nature Methods, 2023
表2  时空组学算法
[1] Salmond G P C, Fineran P C. A century of the phage: past, present and future. Nature Reviews Microbiology, 2015, 13(12): 777-786.
doi: 10.1038/nrmicro3564 pmid: 26548913
[2] Rhie A, Nurk S, Cechova M, et al. The complete sequence of a human Y chromosome. Nature, 2023, 621(7978): 344-354.
doi: 10.1038/s41586-023-06457-y
[3] Li G W, Xie X S. Central dogma at the single-molecule level in living cells. Nature, 2011, 475(7356): 308-315.
doi: 10.1038/nature10315
[4] Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 2019, 20(8): 467-484.
doi: 10.1038/s41576-019-0127-1 pmid: 31068683
[5] Li X M, Wang C Y. From bulk, single-cell to spatial RNA sequencing. International Journal of Oral Science, 2021, 13(1): 36.
doi: 10.1038/s41368-021-00146-0 pmid: 34782601
[6] Gawad C, Koh W, Quake S R. Single-cell genome sequencing: current state of the science. Nature Reviews Genetics, 2016, 17(3): 175-188.
doi: 10.1038/nrg.2015.16 pmid: 26806412
[7] Bressan D, Battistoni G, Hannon G J. The dawn of spatial omics. Science, 2023, 381(6657): eabq4964.
doi: 10.1126/science.abq4964
[8] Moses L, Pachter L. Museum of spatial transcriptomics. Nature Methods, 2022, 19(5): 534-546.
doi: 10.1038/s41592-022-01409-2 pmid: 35273392
[9] Femino A M, Fay F S, Fogarty K, et al. Visualization of single RNA transcripts in situ. Science, 1998, 280(5363): 585-590.
pmid: 9554849
[10] Player A N, Shen L P, Kenny D, et al. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. The Journal of Histochemistry and Cytochemistry, 2001, 49(5): 603-612.
doi: 10.1177/002215540104900507
[11] Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. The Journal of Molecular Diagnostics, 2012, 14(1): 22-29.
doi: 10.1016/j.jmoldx.2011.08.002
[12] Shah S, Lubeck E, Schwarzkopf M, et al. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development, 2016, 143(15): 2862-2867.
doi: 10.1242/dev.138560 pmid: 27342713
[13] Wu C L, Simonetti M, Rossell C, et al. RollFISH achieves robust quantification of single-molecule RNA biomarkers in paraffin-embedded tumor tissue samples. Communications Biology, 2018, 1: 209.
doi: 10.1038/s42003-018-0218-0 pmid: 31924875
[14] Rouhanifard S H, Mellis I A, Dunagin M, et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nature Biotechnology, 2019, 37: 84-89.
doi: 10.1038/nbt.4286
[15] Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nature Methods, 2012, 9(7): 743-748.
doi: 10.1038/nmeth.2069 pmid: 22660740
[16] Eng C H L, Shah S, Thomassie J, et al. Profiling the transcriptome with RNA SPOTs. Nature Methods, 2017, 14(12): 1153-1155.
doi: 10.1038/nmeth.4500
[17] Eng C H L, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature, 2019, 568(7751): 235-239.
doi: 10.1038/s41586-019-1049-y
[18] Moffitt J R, Hao J J, Wang G P, et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 11046-11051.
[19] Wang G P, Moffitt J R, Zhuang X W. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Scientific Reports, 2018, 8(1): 4847.
doi: 10.1038/s41598-018-22297-7 pmid: 29555914
[20] Wang Y H, Eddison M, Fleishman G, et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell, 2021, 184(26): 6361-6377, e24.
doi: 10.1016/j.cell.2021.11.024 pmid: 34875226
[21] Mitra R D, Church G M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Research, 1999, 27(24): e34-e39.
doi: 10.1093/nar/27.24.e34 pmid: 10572186
[22] Mitra R D, Butty V L, Shendure J, et al. Digital genotyping and haplotyping with polymerase colonies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5926-5931.
[23] Lee J H, Daugharthy E R, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ. Science, 2014, 343(6177): 1360-1363.
doi: 10.1126/science.1250212
[24] Ke R Q, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods, 2013, 10(9): 857-860.
doi: 10.1038/nmeth.2563
[25] Gyllborg D, Langseth C M, Qian X Y, et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Research, 2020, 48(19): e112.
doi: 10.1093/nar/gkaa792 pmid: 32990747
[26] Tang X B, Chen J Y, Zhang X Y, et al. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections. Journal of Genetics and Genomics, 2023, 50(9): 652-660.
doi: 10.1016/j.jgg.2023.02.004
[27] Wang X, Allen W E, Wright M A, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science, 2018, 361(6400): eaat5691.
doi: 10.1126/science.aat5691
[28] Alon S, Goodwin D R, Sinha A, et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science, 2021, 371(6528): eaax2656.
doi: 10.1126/science.aax2656
[29] Emmert-Buck M R, Bonner R F, Smith P D, et al. Laser capture microdissection. Science, 1996, 274(5289): 998-1001.
doi: 10.1126/science.274.5289.998 pmid: 8875945
[30] Junker J P, Noël E S, Guryev V, et al. Genome-wide RNA tomography in the zebrafish embryo. Cell, 2014, 159(3): 662-675.
[31] Peng G D, Suo S B, Chen J, et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Developmental Cell, 2016, 36(6): 681-697.
doi: 10.1016/j.devcel.2016.02.020 pmid: 27003939
[32] Zhang X D, Hu C S, Huang C, et al. Robust acquisition of spatial transcriptional programs in tissues with immunofluorescence-guided laser capture microdissection. Frontiers in Cell and Developmental Biology, 2022, 10: 853188.
doi: 10.3389/fcell.2022.853188
[33] Giolai M, Verweij W, Lister A, et al. Spatially resolved transcriptomics reveals plant host responses to pathogens. Plant Methods, 2019, 15(1): 114.
doi: 10.1186/s13007-019-0498-5
[34] Lovatt D, Ruble B K, Lee J, et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods, 2014, 11(2): 190-196.
doi: 10.1038/nmeth.2804 pmid: 24412976
[35] Honda M, Oki S, Kimura R, et al. High-depth spatial transcriptome analysis by photo-isolation chemistry. Nature Communications, 2021, 12(1): 4416.
doi: 10.1038/s41467-021-24691-8 pmid: 34285220
[36] Hu K H, Eichorst J P, McGinnis C S, et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nature Methods, 2020, 17(8): 833-843.
doi: 10.1038/s41592-020-0880-2 pmid: 32632238
[37] Merritt C R, Ong G T, Church S E, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nature Biotechnology, 2020, 38(5): 586-599.
doi: 10.1038/s41587-020-0472-9 pmid: 32393914
[38] Ståhl P L, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016, 353(6294): 78-82.
doi: 10.1126/science.aaf2403 pmid: 27365449
[39] Rodriques S G, Stickels R R, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science, 2019, 363(6434): 1463-1467.
doi: 10.1126/science.aaw1219 pmid: 30923225
[40] Stickels R R, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nature Biotechnology, 2021, 39(3): 313-319.
doi: 10.1038/s41587-020-0739-1 pmid: 33288904
[41] Vickovic S, Eraslan G, Salmén F, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nature Methods, 2019, 16(10): 987-990.
doi: 10.1038/s41592-019-0548-y pmid: 31501547
[42] Liu Y, Yang M Y, Deng Y X, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell, 2020, 183(6): 1665-1681, e18.
doi: 10.1016/j.cell.2020.10.026 pmid: 33188776
[43] Chen A, Liao S, Cheng M N, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell, 2022, 185(10): 1777-1792, e21.
doi: 10.1016/j.cell.2022.04.003 pmid: 35512705
[44] Cho C S, Xi J Y, Si Y C, et al. Microscopic examination of spatial transcriptome using seq-Scope. Cell, 2021, 184(13): 3559-3572, e22.
doi: 10.1016/j.cell.2021.05.010
[45] Fu X N, Sun L, Dong R Z, et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell, 2022, 185(24): 4621-4633, e17.
doi: 10.1016/j.cell.2022.10.021 pmid: 36368323
[46] Schueder F, Bewersdorf J. Omics goes spatial epigenomics. Cell, 2022, 185(23): 4253-4255.
doi: 10.1016/j.cell.2022.10.014 pmid: 36368304
[47] Takei Y, Yun J N, Zheng S W, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature, 2021, 590(7845): 344-350.
doi: 10.1038/s41586-020-03126-2
[48] Zhao T T, Chiang Z D, Morriss J W, et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature, 2022, 601(7891): 85-91.
doi: 10.1038/s41586-021-04217-4
[49] Cardozo Gizzi A M, Cattoni D I, Fiche J B, et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Molecular Cell, 2019, 74(1): 212-222, e5.
doi: S1097-2765(19)30011-5 pmid: 30795893
[50] Su J H, Zheng P, Kinrot S S, et al. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell, 2020, 182(6): 1641-1659, e26.
doi: 10.1016/j.cell.2020.07.032
[51] Lu T, Ang C E, Zhuang X W. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell, 2022, 185(23): 4448-4464, e17.
doi: 10.1016/j.cell.2022.09.035 pmid: 36272405
[52] Llorens-Bobadilla E, Zamboni M, Marklund M, et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nature Biotechnology, 2023, 41(8): 1085-1088.
doi: 10.1038/s41587-022-01603-9 pmid: 36604544
[53] Deng Y X, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science, 2022, 375(6581): 681-686.
doi: 10.1126/science.abg7216
[54] Deng Y X, Bartosovic M, Ma S, et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature, 2022, 609(7926): 375-383.
doi: 10.1038/s41586-022-05094-1
[55] Jiang F Q, Zhou X, Qian Y Y, et al. Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nature Methods, 2023, 20(7): 1048-1057.
doi: 10.1038/s41592-023-01884-1
[56] Schulz D, Zanotelli V R T, Fischer J R, et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Systems, 2018, 6(1): 25-36, e5.
doi: S2405-4712(17)30543-4 pmid: 29289569
[57] Liu X H, Mao D S, Song Y C, et al. Computer-aided design of reversible hybridization chain reaction (CAD-HCR) enables multiplexed single-cell spatial proteomics imaging. Science Advances, 2022, 8(2): eabk0133.
doi: 10.1126/sciadv.abk0133
[58] Zeng H, Huang J H, Zhou H W, et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nature Neuroscience, 2023, 26(3): 430-446.
doi: 10.1038/s41593-022-01251-x pmid: 36732642
[59] Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nature Methods, 2017, 14(9): 865-868.
doi: 10.1038/nmeth.4380 pmid: 28759029
[60] Liao S, Heng Y, Liu W Q, et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. bioRxiv, 2023, DOI: 10.1101/2023.04.28.538364.
doi: 10.1101/2023.04.28.538364
[61] Ben-Chetrit N, Niu X, Swett A D, et al. Integration of whole transcriptome spatial profiling with protein markers. Nature Biotechnology, 2023, 41(6): 788-793.
doi: 10.1038/s41587-022-01536-3 pmid: 36593397
[62] Liu Y, DiStasio M, Su G, et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nature Biotechnology, 2023, 41(10): 1405-1409.
doi: 10.1038/s41587-023-01676-0
[63] Schmidt U, Weigert M, Broaddus C, et al. Cell detection with star-convex polygons. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 265-273.
[64] Bannon D, Moen E, Schwartz M, et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nature Methods, 2021, 18(1): 43-45.
doi: 10.1038/s41592-020-01023-0 pmid: 33398191
[65] Stringer C, Wang T, Michaelos M, et al. Cellpose: a generalist algorithm for cellular segmentation. Nature Methods, 2021, 18(1): 100-106.
doi: 10.1038/s41592-020-01018-x pmid: 33318659
[66] Petukhov V, Xu R J, Soldatov R A, et al. Cell segmentation in imaging-based spatial transcriptomics. Nature Biotechnology, 2022, 40(3): 345-354.
doi: 10.1038/s41587-021-01044-w
[67] Park J, Choi W, Tiesmeyer S, et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nature Communications, 2021, 12(1): 3545.
doi: 10.1038/s41467-021-23807-4
[68] He Y C, Tang X, Huang J H, et al. ClusterMap for multi-scale clustering analysis of spatial gene expression. Nature Communications, 2021, 12(1): 5909.
doi: 10.1038/s41467-021-26044-x pmid: 34625546
[69] Chen H, Li D, Bar-Joseph Z. SCS: cell segmentation for high-resolution spatial transcriptomics. Nature Methods, 2023, 20(8): 1237-1243.
doi: 10.1038/s41592-023-01939-3 pmid: 37429992
[70] Kleshchevnikov V, Shmatko A, Dann E, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature Biotechnology, 2022, 40(5): 661-671.
doi: 10.1038/s41587-021-01139-4 pmid: 35027729
[71] Elosua-Bayes M, Nieto P, Mereu E, et al. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Research, 2021, 49(9): e50.
doi: 10.1093/nar/gkab043 pmid: 33544846
[72] Biancalani T, Scalia G, Buffoni L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature Methods, 2021, 18(11): 1352-1362.
doi: 10.1038/s41592-021-01264-7 pmid: 34711971
[73] Ma Y, Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature Biotechnology, 2022, 40(9): 1349-1359.
doi: 10.1038/s41587-022-01273-7 pmid: 35501392
[74] Hu J, Li X J, Coleman K, et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature Methods, 2021, 18(11): 1342-1351.
doi: 10.1038/s41592-021-01255-8 pmid: 34711970
[75] Dong K N, Zhang S H. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature Communications, 2022, 13(1): 1739.
doi: 10.1038/s41467-022-29439-6 pmid: 35365632
[76] Shang L L, Zhou X. Spatially aware dimension reduction for spatial transcriptomics. Nature Communications, 2022, 13(1): 7203.
doi: 10.1038/s41467-022-34879-1 pmid: 36418351
[77] Zhao E, Stone M R, Ren X, et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nature Biotechnology, 2021, 39(11): 1375-1384.
doi: 10.1038/s41587-021-00935-2 pmid: 34083791
[78] Svensson V, Teichmann S A, Stegle O. SpatialDE: identification of spatially variable genes. Nature Methods, 2018, 15(5): 343-346.
doi: 10.1038/nmeth.4636 pmid: 29553579
[79] Zhu J Q, Sun S Q, Zhou X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biology, 2021, 22(1): 184.
doi: 10.1186/s13059-021-02404-0 pmid: 34154649
[80] Weber L M, Saha A, Datta A, et al. nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes. Nature Communications, 2023, 14(1): 4059.
doi: 10.1038/s41467-023-39748-z pmid: 37429865
[81] DeTomaso D, Yosef N. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Systems, 2021, 12(5): 446-456, e9.
doi: 10.1016/j.cels.2021.04.005 pmid: 33951459
[82] Cang Z X, Zhao Y X, Almet A A, et al. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nature Methods, 2023, 20(2): 218-228.
doi: 10.1038/s41592-022-01728-4 pmid: 36690742
[83] Tanevski J, Flores R O R, Gabor A, et al. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biology, 2022, 23(1): 97.
doi: 10.1186/s13059-022-02663-5 pmid: 35422018
[84] Jerby-Arnon L, Regev A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nature Biotechnology, 2022, 40(10): 1467-1477.
doi: 10.1038/s41587-022-01288-0 pmid: 35513526
[85] Fischer D S, Schaar A C, Theis F J. Modeling intercellular communication in tissues using spatial graphs of cells. Nature Biotechnology, 2023, 41(3): 332-336.
doi: 10.1038/s41587-022-01467-z
[86] He P, Lim K, Sun D W, et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell, 2022, 185(25): 4841-4860, e25.
doi: 10.1016/j.cell.2022.11.005 pmid: 36493756
[87] Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell, 2019, 179(7): 1647-1660, e19.
doi: S0092-8674(19)31282-6 pmid: 31835037
[88] Garcia-Alonso L, Lorenzi V, Mazzeo C I, et al. Single-cell roadmap of human gonadal development. Nature, 2022, 607(7919): 540-547.
doi: 10.1038/s41586-022-04918-4
[89] Ratz M, von Berlin L, Larsson L, et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nature Neuroscience, 2022, 25(3): 285-294.
doi: 10.1038/s41593-022-01011-x pmid: 35210624
[90] Chen W T, Lu A, Craessaerts K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell, 2020, 182(4): 976-991, e19.
doi: 10.1016/j.cell.2020.06.038
[91] Wu L, Yan J Y, Bai Y Q, et al. An invasive zone in human liver cancer identified by stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. Cell Research, 2023, 33(8): 585-603.
doi: 10.1038/s41422-023-00831-1
[92] Wang Y, Liu B, Min Q J, et al. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. Cell Discovery, 2023, 9(1): 96.
doi: 10.1038/s41421-023-00591-7 pmid: 37723144
[93] Hwang W L, Jagadeesh K A, Guo J A, et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nature Genetics, 2022, 54(8): 1178-1191.
doi: 10.1038/s41588-022-01134-8 pmid: 35902743
[94] Chen A, Sun Y D, Lei Y, et al. Single-cell spatial transcriptome reveals cell-type organization in the macaque cortex. Cell, 2023, 186(17): 3726-3743, e24.
doi: 10.1016/j.cell.2023.06.009 pmid: 37442136
[95] Shi H L, He Y C, Zhou Y M, et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature, 2023, 622(7983): 552-561.
doi: 10.1038/s41586-023-06569-5
[96] Sun Y C, Chen X Y, Fischer S, et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nature Neuroscience, 2021, 24(6): 873-885.
doi: 10.1038/s41593-021-00842-4
[97] Maniatis S, Äijö T, Vickovic S, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science, 2019, 364(6435): 89-93.
doi: 10.1126/science.aav9776 pmid: 30948552
[98] Kaufmann M, Schaupp A L, Sun R, et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nature Neuroscience, 2022, 25(7): 944-955.
doi: 10.1038/s41593-022-01097-3 pmid: 35726057
[99] Hara T, Chanoch-Myers R, Mathewson N D, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39(6): 779-792, e11.
doi: 10.1016/j.ccell.2021.05.002 pmid: 34087162
[100] Xia K K, Sun H X, Li J, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Developmental Cell, 2022, 57(10): 1299-1310, e4.
doi: 10.1016/j.devcel.2022.04.011
[101] Du J, Wang Y C, Chen W F, et al. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Molecular Plant, 2023, 16(5): 809-828.
doi: 10.1016/j.molp.2023.03.005
[1] 马莉, 崔海星, 李金泽. 空间组学技术发展趋势的专利分析*[J]. 中国生物工程杂志, 2023, 43(8): 111-117.
[2] 王明科, 孙慧勤, 粟永萍, 邹仲敏. 基因捕获技术的现状及应用[J]. 中国生物工程杂志, 2014, 34(12): 107-111.
[3] 杜淼. 浅谈哺乳动物的无性繁殖[J]. 中国生物工程杂志, 1997, 17(2): 68-70.
[4] 周立, 张筱林. cDNA文库快速构建法及高粱肌动蛋白基因的克隆[J]. 中国生物工程杂志, 1996, 16(2): 26-28.
[5] 周立, 任东路. cDNA文库的快速构建法[J]. 中国生物工程杂志, 1996, 16(1): 48-50.
[6] 桂建芳. 分子发育生物学研究的理想模式──斑马鱼[J]. 中国生物工程杂志, 1995, 15(3): 30-33.
[7] 马海飞. 鳗鲡(Anguilla japonica)人工育苗技术研究进展[J]. 中国生物工程杂志, 1994, 14(2): 28-30.
[8] 吴鹤龄. 转基因小鼠[J]. 中国生物工程杂志, 1992, 12(5): 4-8,32.
[9] КавсанВ.М., КиселевЛ.Л., 梁志国. 反转录法合成互补DNA可能性的广泛扩大[J]. 中国生物工程杂志, 1982, 2(2): 23-27.