Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 101-111    DOI: 10.13523/j.cb.2211055
综述     
反选标记法在微生物基因敲除中的应用*
杨镒婴1,李晓乐1,李子龙2,李秋园3,陈伟1,**,尹守亮1,**
1.华北理工大学生命科学学院 唐山 063210
2.中国科学院微生物研究所微生物资源前期开发国家重点实验室 北京 100101
3.中溶科技股份有限公司 唐山 064499
Application of the Efficient Counter-selection Method in Gene Deletion of Microorganism
YANG Yi-ying1,LI Xiao-le1,LI Zi-long2,LI Qiu-yuan3,CHEN Wei1,**,YIN Shou-liang1,**
1. College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
2. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
3. Zhongrong Technology Corporation Ltd., Tangshan 064499, China
 全文: PDF(1461 KB)   HTML
摘要:

随着后基因组时代的到来,简单高效的基因编辑工具和方法在研究微生物的基因表达调控、工程菌株的遗传改造等方面发挥了巨大作用。反选标记法是基于同源重组原理进行基因敲除的一种便捷高效的方法,该方法通过选择性的遗传标记的丢失和回补,实现对靶基因的敲除或目的基因的插入等分子遗传操作。这种选择性的遗传标记一般不依赖于传统的抗生素筛选标签,且同一反选标记能够反复使用,可连续进行多轮遗传操作,实现对多个基因靶位点的分子编辑。对近年来反选标记基因的种类、作用原理及在微生物基因敲除实验中的应用进行综述,以期为高效、可靠的分子编辑方法的研究提供参考。

关键词: 基因编辑反选标记法基因敲除筛选标签分子遗传    
Abstract:

With the coming of the post genome era, simple and efficient gene editing tools and methods have played a critical role in studying the regulation of gene expression and the genetic modification of engineered strains. The counter-selection methods are much convenient and efficient for gene knockout, which are based on the principle of homologous recombination. Knockout or insert of one target gene is achieved by the loss or supplement of one selective genetic marker, which generally does not rely on the traditional antibiotics. To achieve genetic manipulation of more target genes, the same selected marker can be used repeatedly over the progress of successive manipulation rounds. Because of its versatility, simplicity, efficacy, and wide range of applications, the counter-selective system has been applied in many fields of research, such as biotechnology, genetic engineering, and fundamental and applied biology. In recent years, the types, mechanisms and applications of counter-selection marker genes in microbial gene knockout experiments are reviewed. This genome-editing technique has a valuable advantage that particularly attracts the scientist’s mind, as it allows genome editing in multiple biological systems, and supports great opportunities for the future development of microbial science and rapid remodeling of genes.

Key words: Gene editing    Counter-selection methods    Gene knockout    Screening labels    Molecular genetics
收稿日期: 2022-11-29 出版日期: 2023-05-04
ZTFLH:  Q939  
基金资助: 河北省自然科学基金(C2019209399)
通讯作者: **电子信箱:greatchen@ncst.edu.cn;yinsl@ncst.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨镒婴
李晓乐
李子龙
李秋园
陈伟
尹守亮

引用本文:

杨镒婴, 李晓乐, 李子龙, 李秋园, 陈伟, 尹守亮. 反选标记法在微生物基因敲除中的应用*[J]. 中国生物工程杂志, 2023, 43(4): 101-111.

YANG Yi-ying, LI Xiao-le, LI Zi-long, LI Qiu-yuan, CHEN Wei, YIN Shou-liang. Application of the Efficient Counter-selection Method in Gene Deletion of Microorganism. China Biotechnology, 2023, 43(4): 101-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211055        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/101

图1  乳清酸核苷-5-磷酸脱羧酶参与核苷酸合成的部分步骤[10]
图2  基于pyrF标记基因的内源反选系统筛选靶基因敲除突变株流程
图3  胞嘧啶脱氨酶参与核苷酸合成的部分步骤
图4  基于codA标记基因的外源反选系统筛选靶基因敲除突变株流程
基因名称 功能 应用 参考文献
rpsL 编码链霉素的核糖体亚基蛋白(S12),与链霉素结合后使细菌蛋白的合成受到抑制 大肠杆菌、百日咳杆菌、耻垢分枝杆菌 [15]
pheS 编码苯丙氨酰-tRNA 合成酶 α 亚基,该基因缺失对苯丙氨酸及其类似物敏感 干酪乳杆菌 [32]
upp 编码UPRT,催化5-氟尿嘧啶最终转变成5-氟尿嘧啶单脱氧核糖核苷酸,抑制胸腺嘧啶的合成而导致细菌死亡 枯草芽孢杆菌 [21]
blaI blaI是β-内酰胺酶负调控基因,编码一种抑制因子抑制启动子Pbla转录表达 地衣芽孢杆菌 [22-23]
yoeBVp 转录表达大肠杆菌毒素YoeBVp,导致猪链球菌死亡 猪链球菌 [11]
thyA 编码胸腺酸合成酶,使其对甲氧苄氨嘧啶和相关类似物敏感 大肠杆菌、乳酸乳球菌、霍乱弧菌 [33]
sacB 编码蔗糖果聚糖酶,催化蔗糖水解,最终形成高分子量果聚糖,对菌体产生致死作用 大肠杆菌、嗜肺军团菌、菊欧文氏菌 [30]
lacY 编码乳糖通透酶,使细菌对邻硝基苯-β-D-半乳糖苷敏感 环状芽孢杆菌 [34]
tetAR 编码TetAR蛋白,对四环素具有耐药性,但对亲脂化合物(镰刀菌酸和喹啉酸)敏感 尖孢镰刀菌 [24]
ccdB 编码毒性蛋白质,抑制DNA促旋酶活性,导致细胞死亡 大肠杆菌、灿烂弧菌 [35?-37]
galK 编码半乳糖激酶,分解乳糖为半乳糖和葡萄糖,使菌体对2-脱氧-D-半乳糖(2-deoxygalactose,2-DOG)具有敏感性,碳源分解代谢受到抑制 耻垢分枝杆菌、结核分枝杆菌 [38?-40]
pyrF 编码乳清酸核苷-5-磷酸脱羧酶,可将5-氟乳清酸代谢为毒性代谢物5-氟尿嘧啶 龟裂链霉菌、白念珠菌 [10]
codA 编码大肠杆菌胞嘧啶脱氨酶,将5-FC转化为剧毒的5-氟尿嘧啶,使菌体致死 莱茵衣藻、酵母、青蒿 [28,41 -42]
表1  反选标记基因的种类和功能
[1] Crader M F. Getting back to the basics of microbiology antimicrobial stewardship efforts. American Journal of Health-System Pharmacy, 2022, 79(16): 1307-1308.
doi: 10.1093/ajhp/zxac125 pmid: 35512267
[2] Pramastya H, Song Y, Elfahmi E Y, et al. Positioning Bacillus subtilis as terpenoid cell factory. Journal of Applied Microbiology, 2021, 130(6): 1839-1856.
doi: 10.1111/jam.14904 pmid: 33098223
[3] Slemc L, Pikl Š, Petković H, et al. Molecular biology methods in Streptomyces rimosus, a producer of oxytetracycline. Methods in Molecular Biology, 2021, 2296: 303-330.
[4] Santos L O, Silva P G P, Junior W J F L, et al. Glutathione production by Saccharomyces cerevisiae: current state and perspectives. Applied Microbiology and Biotechnology, 2022, 106(5-6): 1879-1894.
doi: 10.1007/s00253-022-11826-0
[5] Pant S, Nag P, Ghati A, et al. Employment of the CRISPR/Cas 9 system to improve cellulase production in Trichoderma reesei. Biotechnology Advances, 2022, 60: 108022.
[6] Li C, Zhou J W, Du G C, et al. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 2020, 44: 107630.
[7] 刘文. 微生物次生代谢产物的生物合成. 微生物学通报, 2021, 48(7): 2295-2297.
Liu W. Biosynthesis of microbial secondary metabolites. Microbiology China, 2021, 48(7): 2295-2297.
[8] Kieser T, Bibb M J, Buttner M J, et al. Practical streptomyces genetics. Norwich: John Innes Foundation, 2000: 311-338.
[9] Jian Z H, Zeng L, Xu T J, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. Journal of Basic Microbiology, 2021, 61(12): 1049-1070.
doi: 10.1002/jobm.202100201 pmid: 34651331
[10] Yang Y Y, Sun Q Q, Liu Y, et al. Development of a pyrF-based counterselectable system for targeted gene deletion in Streptomyces rimosus. Journal of Zhejiang University-SCIENCE B, 2021, 22(5): 383-396.
doi: 10.1631/jzus.B2000606
[11] Zheng C K, Wei M, Qiu J, et al. A markerless gene deletion system in Streptococcus suis by using the copper-inducible Vibrio parahaemolyticus YoeB toxin as a counterselectable marker. Microorganisms, 2021, 9(5): 1095.
doi: 10.3390/microorganisms9051095
[12] Qin Z J, Yu S Q, Liu L, et al. A SacB-based system for diverse and multiple genome editing in Gluconobacter oxydans. Journal of Biotechnology, 2021, 338: 31-39.
doi: 10.1016/j.jbiotec.2021.07.004
[13] 洪伟, 万雯, 崔古贞, 等. 艰难梭菌基因编辑技术研究进展. 生物工程学报, 2020, 36(2): 210-225.
doi: 10.13345/j.cjb.190171 pmid: 32147994
Hong W, Wan W, Cui G Z, et al. Advances in Clostridioes difficile genome editing. Chinese Journal of Biotechnology, 2020, 36(2): 210-225.
doi: 10.13345/j.cjb.190171 pmid: 32147994
[14] 李瑞娟, 赵晓雨, 杨润雨, 等. 噬菌体重组酶介导的DNA同源重组工程. 微生物学通报, 2021, 48(9): 3230-3248.
Li R J, Zhao X Y, Yang R Y, et al. Recombineering mediated by bacteriophage recombinases. Microbiology China, 2021, 48(9): 3230-3248.
[15] Liu M F, Tian X, Wang M Y, et al. Development of a markerless gene deletion strategy using rpsL as a counterselectable marker and characterization of the function of RA0C 1534 in Riemerella anatipestifer ATCC11845 using this strategy. PLoS One, 2019, 14(6): e0218241.
[16] Stibitz S, Black W, Falkow S. The construction of a cloning vector designed for gene replacement in Bordetella pertussis. Gene, 1986, 50(1-3): 133-140.
pmid: 2884169
[17] Wong Q N Y, Ng V C W, Lin M C M, et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 2005, 33(6): e59.
doi: 10.1093/nar/gni059
[18] Liu Q L, Wu Y Z, Yang P, et al. MazF-mediated deletion system for large-scale genome engineering in Saccharomyces cerevisiae. Research in Microbiology, 2014, 165(10): 836-840.
doi: 10.1016/j.resmic.2014.10.005
[19] Rivero-Müller A, Lajić S, Huhtaniemi I. Assisted large fragment insertion by Red/ET-recombination (ALFIRE): an alternative and enhanced method for large fragment recombineering. Nucleic Acids Research, 2007, 35(10): e78.
doi: 10.1093/nar/gkm250 pmid: 17517785
[20] Song Y F, He S Q, Jopkiewicz A, et al. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. Journal of Applied Microbiology, 2022, 133(4): 2280-2298.
doi: 10.1111/jam.15704
[21] Fabret C, Ehrlich S D, Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Molecular Microbiology, 2002, 46(1): 25-36.
doi: 10.1046/j.1365-2958.2002.03140.x
[22] 康倩, 向梦洁, 张大伟. 枯草芽孢杆菌在系统与合成生物技术中研究进展及工业应用. 生物工程学报, 2021, 37(3): 923-938.
Kang Q, Xiang M J, Zhang D W. Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology. Chinese Journal of Biotechnology, 2021, 37(3): 923-938.
[23] Brans A, Filée P, Chevigné A, et al. New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Applied and Environmental Microbiology, 2004, 70(12): 7241-7250.
doi: 10.1128/AEM.70.12.7241-7250.2004
[24] 陈红, 林泽俊, 朱琳, 等. 一种靶向四环素抗性基因tetA的sgRNA及其敲除载体、载体构建方法和应用: 中国, CN111378660A. 2021-08-06 [2022-11-29]. https://cprs.patentstar.com.cn/Search/Detail?ANE=6EAA9HDB9GED1ABA9BHA2BBA9FEB9BID9GFE9BGH8AIA9AFE.
Chen H, Lin Z J, Zhu L, et al. SgRNA of specific targeting antibiotic resistance gene tetA, knockout vector, vector construction method and application thereof: China, CN111378660A. 2021-08-06 [2022-11-29]. https://cprs.patentstar.com.cn/Search/Detail?ANE=6EAA9HDB9GED1ABA9BHA2BBA9FEB9BID9GFE9BGH8AIA9AFE.
[25] Zeng H, Wen S S, Xu W, et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Applied Microbiology and Biotechnology, 2015, 99(24): 10575-10585.
doi: 10.1007/s00253-015-6931-4 pmid: 26318449
[26] 王海宁, 金珊珊, 徐正中, 等. 结核分枝杆菌基因敲除技术的研究进展. 中国人兽共患病学报, 2020, 36(11): 928-933.
Wang H N, Jin S S, Xu Z Z, et al. Reviews of gene knockout technology in Mycobacterium tuberculosis. Chinese Journal of Zoonoses, 2020, 36(11): 928-933.
[27] Mahan S D, Ireton G C, Stoddard B L, et al. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference. Biochemistry, 2004, 43(28): 8957-8964.
pmid: 15248753
[28] 和婷. Ku基因和条件致死基因codA在衣藻基因编辑中的应用研究. 深圳: 深圳大学, 2018.
He T. Application of Ku gene and conditional lethal gene codA in gene editing of Chlamydomonas reinhardtii. Shenzhen: Shenzhen University, 2018.
[29] Jackson H O, Taunt H N, Mordaka P M, et al. CpPosNeg: a positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnology Journal, 2022, 17(10): e2200088.
[30] 刘马峰, 黄月, 罗睿心, 等. 蔗糖致死基因SacB在基因缺失反向筛选标记中的应用及其无痕缺失自杀载体: 中国, CN108504675A. 2018-09-07 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DGC9EHC9FHEADGA7AGA3ADA9EGC9FDF9IFH9IDCEGIA9CAC.
Liu M F, Huang Y, Luo R X, et al. Application of sucrose lethal gene SacB in gene deleted reverse screening marker, and marker-free deleted suicide vector of sucrose lethal gene SacB: China, CN108504675A. 2018-09-07 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DGC9EHC9FHEADGA7AGA3ADA9EGC9FDF9IFH9IDCEGIA9CAC.
[31] Pelicic V, Reyrat J M, Gicquel B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. Journal of Bacteriology, 1996, 178(4): 1197-1199.
pmid: 8576057
[32] 王惋, 侯俊财, 于彤, 等. 具有抗氧化和抑菌能力的益生性乳酸菌筛选及鉴定. 食品与发酵工业, 2020, 46(3): 43-49.
Wang W, Hou J C, Yu T, et al. Screening and identification of probiotic lactic acid bacteria strains with antioxidative and antimicrobial abilities. Food and Fermentation Industries, 2020, 46(3): 43-49.
[33] Chatterjee I, Kriegeskorte A, Fischer A, et al. In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus. Journal of Bacteriology, 2008, 190(3): 834-842.
doi: 10.1128/JB.00912-07 pmid: 17905979
[34] Abramson J, Wright E M. Function trumps form in two sugar symporters, LacY and vSGLT. International Journal of Molecular Sciences, 2021, 22(7): 3572.
doi: 10.3390/ijms22073572
[35] 苏丹, 江华, 卢德仁. 利用ccdB致死基因快速构建重组质粒的试剂盒: 中国,CN110305885A. 2019-10-08 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DEA6ECA9DHCCFFA6EBA5DCA9IDF9AFE9FBE9EIH9GAFBGGA.
Su D, Jiang H, Lu D R. Kit for rapid construction of recombinant plasmid by using ccdB lethal gene: China,CN110305885A. 2019-10-08 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DEA6ECA9DHCCFFA6EBA5DCA9IDF9AFE9FBE9EIH9GAFBGGA.
[36] De Jonge N, Hohlweg W, Garcia-Pino A, et al. Structural and thermodynamic characterization of Vibrio fischeri CcdB. Journal of Biological Chemistry, 2010, 285(8): 5606-5613.
doi: 10.1074/jbc.M109.068429
[37] Zavrtanik U, Hadži S, Lah J. Unraveling the thermodynamics of ultra-tight binding of intrinsically disordered proteins. Frontiers in Molecular Biosciences, 2021, 8: 726824.
[38] Warming S, Costantino N, Court D L, et al. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 2005, 33(4): e36.
doi: 10.1093/nar/gni035 pmid: 15731329
[39] Hampton H G, Patterson A G, Chang J T, et al. GalK limits type I-F CRISPR-Cas expression in a CRP-dependent manner. FEMS Microbiology Letters, 2019, 366(11): fnz137.
doi: 10.1093/femsle/fnz137
[40] Menotti L, Leoni V, Gatta V, et al. oHSV genome editing by means of galK recombineering. Methods in Molecular Biology, 2020, 2060: 131-151.
doi: 10.1007/978-1-4939-9814-2_7 pmid: 31617176
[41] 冯丽玲, 杨瑞仪, 杨雪芹, 等. 大肠杆菌CodA基因表达赋予转基因青蒿负选择表型. 中草药, 2005, 36(4): 578-582.
Feng L L, Yang R Y, Yang X Q, et al. Expression of CodA gene from Escherichia coli confering a negative selection phenotype on transgenic Artemisia annua. Chinese Traditional and Herbal Drugs, 2005, 36(4): 578-582.
[42] 梁振. 一种快速筛选非转基因定点突变植物的方法: 中国, CN111534538A. 2022-02-01 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DEA4AEA9FHF8CGA9BHA0AAA9GDDAHBA9ICB9IIHADGA2CAA.
Liang Z. A rapid screening method for non-transgenic site-directed mutagenesis plants : China, CN111534538A. 2022-02-01 [2022-10-19]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9DEA4AEA9FHF8CGA9BHA0AAA9GDDAHBA9ICB9IIHADGA2CAA.
[43] Wu S Q, Xu R, Su M J, et al. A pyrF-based efficient genetic manipulation platform in Acinetobacter baumannii to explore the vital DNA components of adaptive immunity for I-F CRISPR-cas. Microbiology Spectrum, 2022, 10(5): e0195722.
[44] Suzuki H, Murakami A, Yoshida K. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR. Applied and Environmental Microbiology, 2012, 78(20): 7376-7383.
doi: 10.1128/AEM.01669-12
[45] 赵然. 基于CRISPR/Cas12a的食气扬氏梭菌基因组编辑工具的建立与应用. 开封: 河南大学, 2019.
Zhao R. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection by synthesis gas fermentation. Kaifeng: Henan University, 2019.
[46] Zhao G, Wang J, Chanyu Y, et al. Alkaline lysis-recombinase polymerase amplification combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. Food Chemistry, 2022, 383: 132318.
[47] Pu X J, Liu L N, Li P, et al. A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. The Plant Journal: for Cell and Molecular Biology, 2019, 100(4): 863-872.
doi: 10.1111/tpj.v100.4
[48] Yano T, Sanders C, Catalano J, et al. SacB-5-Fluoroorotic acid-pyrE-based bidirectional selection for integration of unmarked alleles into the chromosome of Rhodobacter capsulatus. Applied and Environmental Microbiology, 2005, 71(6): 3014-3024.
doi: 10.1128/AEM.71.6.3014-3024.2005
[49] Sato T, Fukui T, Atomi H, et al. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2003, 185(1): 210-220.
doi: 10.1128/JB.185.1.210-220.2003
[1] 张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.
[2] 董慧霞, 侯占铭. 尖孢镰刀菌亚麻专化型Folprp4基因参与调控菌丝生长和分生孢子发生[J]. 中国生物工程杂志, 2022, 42(3): 13-26.
[3] 孙瑾瑜,刘光,李晨,王颖,刘国庆. 重组酶介导的定点整合及在构建重组CHO细胞中的应用[J]. 中国生物工程杂志, 2022, 42(12): 52-60.
[4] 冯宝琪,冯娇,张苗,刘洋,曹睿,尹涵之,齐凤仙,李子龙,尹守亮. 利用Tn5型转座突变系统筛选高产阿维菌素菌株*[J]. 中国生物工程杂志, 2021, 41(7): 32-41.
[5] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[6] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[7] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[8] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[9] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[10] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[11] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[12] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[13] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[14] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[15] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.