Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 36-43    DOI: 10.13523/j.cb.2302003
研究报告     
基于油质蛋白oleosin鉴定短序列脂滴定位信号*
李佳文1,2,范雨萱2,李福利2,3,张朝辉1,**(),王士安2,3,**()
1 中国海洋大学食品科学与工程学院 青岛 266003
2 中国科学院青岛生物能源与过程研究所 青岛 266101
3 山东能源研究院 青岛 266101
Ide.pngication of Short Peptides from Oleosin for Lipid Droplet Localization in Xanthophyllomyces dendrorhous
Jia-wen LI1,2,Yu-xuan FAN2,Fu-li LI2,3,Zhao-hui ZHANG1,**(),Shi-an WANG2,3,**()
1 College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
3 Shandong Energy Institute, Qingdao 266101, China
 全文: PDF(1715 KB)   HTML
摘要:

目的:人工区室化是代谢工程及合成生物学的重要技术手段,针对脂滴区室化技术未得到有效评价的现状,以产油微生物红法夫酵母为检验体系,评价筛选脂滴定位信号。方法:基于芝麻油质蛋白oleosin的三维结构及其跨膜结构域分析,设计短序列脂滴定位信号,构建定位信号与eGFP荧光蛋白基因融合的表达载体,转化红法夫酵母,采用荧光显微观察评价定位信号的定位功能。结果:完整的oleosin蛋白Ols1(1-145)和肽段Ols2(1-63)、Ols4(32-63)、Ols5(44-63)均能引导eGFP定位于红法夫酵母的脂滴内部,肽段Ols3(64-145)不能有效引导eGFP定位于脂滴,仅在细胞质中游离表达。结论:筛选得到了一个短序列脂滴定位信号Ols5(44-63),其仅含19个氨基酸,能够有效引导eGFP定位于脂滴内部。

关键词: 亚细胞定位脂滴油质蛋白红法夫酵母合成生物学    
Abstract:

Objective: A.pngicial compartmentalization is among the important approaches in metabolic engineering and synthetic biology. Due to the insufficient evaluation of compartmentalization in lipid droplets (LDs), the aim of this work is to ide.pngy efficient LD localization signals in the oleaginous yeast Xanthophyllomyces dendrorhous. Methods: Based on the three-dimensional structure and the predicted transmembrane domain (TMD) of sesame oleosin, LD localization signals were predicted and fused with eGFP to generate a series of expression vectors, which were used to transform X. dendrorhous. Green and orange fluorescence was observed and used to assess the efficiency of the predicted LD localization signals. Results: The intact oleosin protein Ols1(1-145) and truncated peptides Ols2(1-63), Ols4(32-63), and Ols5(44-63) successfully guided eGFP is localization in LDs, while truncated peptide Ols3(64-145) was ineffective and most eGFP proteins were expressed in cytoplasm. Conclusion: A short LD localization signal Ols5(44-63) consisting of 19 amino acids was ide.pngied, which can precisely lead the eGFP to localize inside the LDs.

Key words: Subcellular localization    Lipid droplets    Oleosin    Xanthophyllomyces dendrorhous    Synthetic biology
收稿日期: 2023-02-03 出版日期: 2023-08-03
ZTFLH:  Q819  
基金资助: 国家重点研发计划(2022YFC2106200)
通讯作者: **电子信箱:zhangzhh@ouc.edu.cn;wangsa@qibebt.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李佳文
范雨萱
李福利
张朝辉
王士安

引用本文:

李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.

Jia-wen LI, Yu-xuan FAN, Fu-li LI, Zhao-hui ZHANG, Shi-an WANG. Ide.pngication of Short Peptides from Oleosin for Lipid Droplet Localization in Xanthophyllomyces dendrorhous. China Biotechnology, 2023, 43(7): 36-43.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302003        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/36

质粒 基因型或描述 来源
pUG6 骨架质粒,G418R EUROSCARF
pETM6-eGFP PT7-eGFP-TT7 本实验室保藏
pUG6-CYP61-tn5 CYP61PGDH-Tn5-TTEF 本实验室保藏
pUG6-CYP61-eGFP CYP61PGPD-eGFP-TACT, G418R 本研究
pUG6-eGFP-Ols1 CYP61PGPD-eGFP-Os1-TACT, G418R 本研究
pUG6-eGFP-Ols2 CYP61PGPD-eGFP-Os2-TACT, G418R 本研究
pUG6-eGFP-Ols3 CYP61PGPD-eGFP-Os3-TACT, G418R 本研究
pUG6-eGFP-Ols4 CYP61PGPD-eGFP-Os4-TACT, G418R 本研究
pUG6-eGFP-Ols5 CYP61PGPD-eGFP-Os5-TACT, G418R 本研究
表1  本研究所用质粒
Primer Sequence(5'→3')
bOem-F GGATCCTAAGTCAACAAAG
bOem-R GAATTCGATGGTAAGAGTG
OeGFP-F acactcttaccatcgaattcAGTAAAGGAGAAGAACTTTTC
OeGFP-R actttgttgacttaggatccCTATTTGTATAGTTCATCCATGC
bO1-F ATGGTGAGCAAGGGCGAG
bO1-R GAATTCGATGGTAAGAGTG
O1-F acactcttaccatcgaattcATGGCTGAGCACTACGGAC
O1-R tcctcgcccttgctcaccatGGAAGTCTGAGATCCAGCAAC
bO2-F GTGAGCAAGGGCGAGGAG
bO2-R ATGAGTATTCAACATTTCCGTGTCGCC
O2-F cggaaatgttgaatactcatACTCTTCCTTTTTCAATATTATTGAAG
O2-R agctcctcgcccttgctcacGAAGATGACGAGGAGAGG
bO3-F ATGGCTCAGCGAGTCGTTAAG
bO3-R ATGAGTATTCAACATTTCCGTGTC
O3-F cggaaatgttgaatactcatACTCTTCCTTTTTCAATATTATTG
O3-R ttaacgactcgctgagccatGATGGTAAGAGTGTTAGAG
bO4-F ATGACTGCCGGAGGATCTC
bO4-R ATGAGTATTCAACATTTCCG
O4-F cggaaatgttgaatactcatACTCTTCCTTTTTCAATATTATTG
O4-R agagatcctccggcagtcatGATGGTAAGAGTGTTAGAG
bO5-F ATGACCCTTGCCGGAACTG
bO5-R ATGAGTATTCAACATTTCCG
O5-F cggaaatgttgaatactcatACTCTTCCTTTTTCAATATTATTG
O5-R acagttccggcaagggtcatGATGGTAAGAGTGTTAGAG
Ols-UF AACGCACTCTCTTATAGCC
Ols-UR AGGAAAAGGAAAAAAGATGGC
Ols-DF CGAAATCGTAACAACACAAGAC
Ols-DR TACTCGAACCCGATACACTT
表2  PCR引物序列
蛋白名称 氨基酸序列
Ols1(1-145) MAEHYGQQQQTRAPHLQLQPRAQRVVKAATAVTA
GGSLLVLSGLTLAGTVIALTIATPLLVIFSPVLVPAVIT
IFLLGAGFLASGGFGVAALSVLSWIYRYLTGKHPPG
ADQLESAKTKLASKAREMKDRAEQFSQQPVAGSQTS
表3  Oleosin蛋白的氨基酸序列
图1  完整oleosin蛋白在酵母细胞中的亚细胞定位
图2  油质蛋白oleosin的结构预测及跨膜区预测
图3  油质蛋白oleosin的结构及eGFP在脂滴内部的定位设计
图4  截短的oleosin蛋白在酵母细胞中的亚细胞定位结果
图5  截短的oleosin蛋白在酵母细胞中的亚细胞定位结果
[1] Shi Y S, Wang D, Li R S, et al. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metabolic Engineering, 2021, 67: 104-111.
doi: 10.1016/j.ymben.2021.06.002 pmid: 34153454
[2] Chen X, Zhu C X, Na Y T, et al. Compartmentalization of melanin biosynthetic enzymes contributes to self-defense against intermediate compound scytalone in Botrytis cinerea. mBio, 2021, 12(2): e00007-e00021.
[3] Jaramillo-Madrid A C, Lacchini E, Goossens A. Within and beyond organelle engineering: strategies for increased terpene production in yeasts and plants. Current Opinion in Green and Sustainable Chemistry, 2022, 33: 100572.
doi: 10.1016/j.cogsc.2021.100572
[4] Hammer S K, Avalos J L. Harnessing yeast organelles for metabolic engineering. Nature Chemical Biology, 2017, 13(8): 823-832.
doi: 10.1038/nchembio.2429 pmid: 28853733
[5] Avalos J L, Fink G R, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nature Biotechnology, 2013, 31(4): 335-341.
doi: 10.1038/nbt.2509 pmid: 23417095
[6] Cao X, Yang S, Cao C Y, et al. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5(3): 179-186.
doi: 10.1016/j.synbio.2020.06.005 pmid: 32637671
[7] Plegaria J S, Kerfeld C A. Engineering nanoreactors using bacterial microcompartment architectures. Current Opinion in Biotechnology, 2018, 51: 1-7.
doi: S0958-1669(17)30137-4 pmid: 29035760
[8] Zhao E M, Suek N, Wilson M Z, et al. Light-based control of metabolic flux through assembly of synthetic organelles. Nature Chemical Biology, 2019, 15(6): 589-597.
doi: 10.1038/s41589-019-0284-8 pmid: 31086330
[9] Li T P, Jiang Q Y, Huang J F, et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature Communications, 2020, 11(1): 5448.
doi: 10.1038/s41467-020-19280-0 pmid: 33116131
[10] Dusséaux S, Wajn W T, Liu Y X, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31789-31799.
[11] Kim J E, Jang I S, Son S H, et al. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metabolic Engineering, 2019, 56: 50-59.
doi: 10.1016/j.ymben.2019.08.013
[12] Thodey K, Galanie S, Smolke C D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology, 2014, 10(10): 837-844.
doi: 10.1038/nchembio.1613 pmid: 25151135
[13] Yu Y, Rasool A, Liu H R, et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62: 72-83.
doi: 10.1016/j.ymben.2020.08.010
[14] Zhang J L, Bai Q Y, Peng Y Z, et al. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. Biotechnology for Biofuels, 2020, 13:133.
doi: 10.1186/s13068-020-01773-1
[15] Ma T, Shi B, Ye Z L, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52: 134-142.
doi: 10.1016/j.ymben.2018.11.009
[16] Yang K X, Qiao Y G, Li F, et al. Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica. Metabolic Engineering, 2019, 55: 231-238.
doi: 10.1016/j.ymben.2019.08.001
[17] Sadre R, Kuo P, Chen J X, et al. Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid biomaterials in leaves. Nature Communications, 2019, 10: 853.
doi: 10.1038/s41467-019-08515-4 pmid: 30787273
[18] Bhatla S C, Kaushik V, Yadav M K. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnology Advances, 2010, 28(3): 293-300.
doi: 10.1016/j.biotechadv.2010.01.001 pmid: 20067829
[19] Li M, Murphy D J, Lee K H K, et al. Purification and structural characterization of the central hydrophobic domain of oleosin. Journal of Biological Chemistry, 2002, 277(40): 37888-37895.
doi: 10.1074/jbc.M202721200 pmid: 12124381
[20] Cao H P. Genome-wide analysis of oleosin gene family in 22 tree species: an accelerator for metabolic engineering of bioFuel crops and agrigenomics industrial applications. OMICS: A Journal of Integrative Biology, 2015, 19(9): 521-541.
doi: 10.1089/omi.2015.0073
[21] Welte M A, Gould A P. Lipid droplet functions beyond energy storage. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2017, 1862(10): 1260-1272.
doi: 10.1016/j.bbalip.2017.07.006
[22] Tai S S K, Chen M C M, Peng C C, et al. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Bioscience, Biotechnology, and Biochemistry, 2002, 66(10): 2146-2153.
pmid: 12450125
[23] Frandsen G I, Mundy J, Tzen J T C. Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum, 2001, 112(3): 301-307.
doi: 10.1034/j.1399-3054.2001.1120301.x
[24] Jolivet P, Aymé L, Giuliani A, et al. Structural proteomics: topology and relative accessibility of plant lipid droplet associated proteins. Journal of Proteomics, 2017, 169: 87-98.
doi: S1874-3919(17)30320-2 pmid: 28918933
[25] Mussagy C U, Remonatto D, Picheli F P, et al. A look into Phaffia rhodozyma biorefinery: from the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics. Bioresource Technology, 2022, 362: 127785.
doi: 10.1016/j.biortech.2022.127785
[26] Zhang L L, Reyes A, Wang X D. The role of mitochondria-targeted antioxidant MitoQ in neurodegenerative disease. Molecular and Cellular Therapies, 2018, 6(1): 1-8.
[27] Gómez M, Campusano S, Gutiérrez M S, et al. Sterol regulatory element-binding protein Sre 1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous. Journal of Lipid Research, 2020, 61(12): 1658-1674.
doi: 10.1194/jlr.RA120000975
[28] Alesci A, Salvo A, Lauriano E R, et al. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Natural Product Research, 2015, 29(12): 1122-1126.
doi: 10.1080/14786419.2014.979417
[29] Davidi L, Levin Y, Ben-Dor S, et al. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiology, 2015, 167(1): 60-79.
doi: 10.1104/pp.114.248450 pmid: 25404729
[30] Van de Linde S. Single-molecule localization microscopy analysis with ImageJ. Journal of Physics D: Applied Physics, 2019, 52(20): 203002.
doi: 10.1088/1361-6463/ab092f
[31] Ling H. Oleosin fusion expression systems for the production of recombinant proteins. Biologia, 2007, 62(2): 119-123.
doi: 10.2478/s11756-007-0041-4
[32] Lv X M, Wang F, Zhou P P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nature Communications, 2016, 7: 12851.
doi: 10.1038/ncomms12851
[33] Zhang W, Du L, Qu Z P, et al. Compartmentalized biosynthesis of mycophenolic acid. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13305-13310.
[34] Sheng J Y, Stevens J, Feng X Y. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Scie.pngic Reports, 2016, 6: 26884.
[35] Grewal P S, Samson J A, Baker J J, et al. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nature Chemical Biology, 2021, 17(1): 96-103.
doi: 10.1038/s41589-020-00668-4 pmid: 33046851
[36] Van Rossum H M, Kozak B U, Pronk J T, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metabolic Engineering, 2016, 36: 99-115.
doi: 10.1016/j.ymben.2016.03.006
[37] Zhou Y J, Buijs N A, Zhu Z W, et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. Journal of the American Chemical Society, 2016, 138(47): 15368-15377.
pmid: 27753483
[38] Gao S L, Tong Y Y, Zhu L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017, 41: 192-201.
doi: 10.1016/j.ymben.2017.04.004
[39] Liu G S, Li T, Zhou W, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 2020, 57: 151-161.
doi: 10.1016/j.ymben.2019.11.001
[40] Zhu Z W, Zhang S F, Liu H W, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 2012, 3: 112.
[41] Deng J N, Liu S X, Zou L Q, et al. Lipolysis response to endoplasmic reticulum stress in adipose cells. The Journal of Biological Chemistry, 2012, 287(9): 6240-6249.
doi: 10.1074/jbc.M111.299115
[42] Yang L L, Liang J J, Lam S M, et al. Neuronal lipolysis participates in PUFA-mediated neural function and neurodegeneration. EMBO Reports, 2020, 21(11): e50214.
doi: 10.15252/embr.202050214
[1] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[2] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[3] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[4] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[5] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[6] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[7] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[8] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[9] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[10] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[11] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[12] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[13] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[14] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[15] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.