Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 92-100    DOI: 10.13523/j.cb.2210013
综述     
光控表达系统在合成生物学中的调控作用*
刘亭亭,张平,张悦()
大连工业大学生物工程学院 大连 116034
Regulation Role of Light-controlled Expression Systems in Synthetic Biology
LIU Ting-ting,ZHANG Ping,ZHANG Yue()
College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
 全文: PDF(992 KB)   HTML
摘要:

光遗传学技术是将遗传学技术与光控技术相结合,利用光源控制生物过程的一项全新技术。光控表达系统是基于光遗传学技术与合成生物学方法相结合的策略,将光作为感测模块与生物体内已有的基因模块组合构成全新的基因回路,通过光信号动态调控基因表达的系统。该系统是一种低成本、低毒性、高灵活性的新型动态调控开关,对基因精准调控的同时还能有效解决能源短缺问题。目前,该系统已经成熟地应用于疾病诊疗、材料合成等领域,同时也极大促进了微生物代谢及合成生物学的发展。光受体是光遗传学技术中不可缺少的工具元件,根据不同生物光受体的感光特性,介绍用于控制基因表达的光调控系统,重点分析其在调控微生物系统内基因表达、代谢途径和药物递送中的应用,探讨光遗传学技术在合成生物学应用中可能存在的问题及未来发展前景。

关键词: 光遗传学合成生物学动态调控光受体    
Abstract:

Optogenetics is a new technology that combines genetics technology and light control technology to control biological processes with light. Based on the strategy of combining optogenetics and synthetic biology methods, researchers combined light as a sensing module with existing gene modules in organisms to form a new gene circuit, and designed a system that can dynamically regulate gene expression through light signals. As a new type of dynamic regulation switch with low cost, low toxicity and high flexibility, it has not only been applied in disease diagnosis, material synthesis and other fields, but also greatly promoted the progress of microbial metabolism and helped solve energy shortage problems. Since photoreceptors are indispensable components in optogenetics technology, this paper introduce several light-regulated systems used to control gene expression according to the photosensitive properties of different photoreceptors, and focus on their applications in regulating microbial system gene expression, metabolic pathways and drug delivery. Meanwhile, the potential problems and prospects of the application of photogenetics in synthetic biology were also discussed.

Key words: Optogenetics    Synthetic biology    Dynamic regulation    Photoreceptors
收稿日期: 2022-10-11 出版日期: 2023-05-04
ZTFLH:  Q819  
基金资助: 辽宁省教育厅科学研究(J2020098)
通讯作者: **电子信箱:zhangyue@dlpu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘亭亭
张平
张悦

引用本文:

刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.

LIU Ting-ting, ZHANG Ping, ZHANG Yue. Regulation Role of Light-controlled Expression Systems in Synthetic Biology. China Biotechnology, 2023, 43(4): 92-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210013        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/92

图1  红光调控系统 PHYB与PIF3光激活机制
图2  蓝光调控系统 CRY2与CIB1光激活机制
图3  蓝光调控系统LOV2光激活机制
图4  紫外光调控系统 COP1与UVR8光激活机制
图5  绿光调控系统 CarH与CarO光激活机制
光源类型 光受体来源 系统组分 宿主 诱导倍数/产量 参考文献
红光、远红光 拟南芥 PHYB/PIF3 酿酒酵母 >1 000倍 [5]
红光、远红光 拟南芥 PhyB-synTALE-DBD/
PIF3-VP64AD
酿酒酵母 PhiReX1.0: 11倍, PhiReX1.1:41倍 [40]
红光、远红光 拟南芥 PHYB/PIF3 大肠杆菌 5倍 [41]
蓝光 拟南芥 CRY2/CIB1 酿酒酵母 120倍 [22]
蓝光 拟南芥 CRY2/CIB1 酿酒酵母 5倍 [42]
蓝光 燕麦 AsLOV2 酿酒酵母 5倍 [43]
蓝光 粗糙脉孢菌 LightOn 小鼠 200~300倍 [44]
蓝光 山葡萄红杆菌 EL222 酿酒酵母 (8.49 ± 0.31)g/L [45]
紫外光 拟南芥 UVR8/COP1 酿酒酵母 80倍 [46]
绿光 嗜热栖热菌 CarH/VPRH 解脂耶氏酵母 绿光及黑暗条件下分别为
99.1 mg/L、117.1mg/L
[47]
表1  光调控系统的应用
[1] Keyes W M, Mills A A. Inducible systems see the light. Trends in Biotechnology, 2003, 21(2): 53-55.
pmid: 12573850
[2] Toettcher J E, Voigt C A, Weiner O D, et al. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nature Methods, 2011, 8(1): 35-38.
doi: 10.1038/nmeth.f.326 pmid: 21191370
[3] 冯秀英. 光敏蛋白vivid的性质研究和应用. 上海: 华东理工大学, 2011.
Feng X Y. The properties research and application of the photoreceptor protein vivid. Shanghai: East China University of Science and Technology, 2011.
[4] 罗月. 光控基因表达调控系统的构建及其在代谢工程中的应用. 济南: 山东大学, 2021.
Luo Y. Construction of light-controlled gene expression regulation system and its application in metabolic engineering. Jinan: Shandong University, 2021.
[5] Shimizu-Sato S, Huq E, Tepperman J M, et al. A light-switchable gene promoter system. Nature Biotechnology, 2002, 20(10): 1041-1044.
pmid: 12219076
[6] Davis S J, Vener A V, Vierstra R D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 1999, 286(5449): 2517-2520.
pmid: 10617469
[7] Auldridge M E, Forest K T. Bacterial phytochromes: more than meets the light. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46(1): 67-88.
doi: 10.3109/10409238.2010.546389 pmid: 21250783
[8] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 2006, 57(1): 837-858.
doi: 10.1146/arplant.2006.57.issue-1
[9] Wu S H, Lagarias J. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry, 2000, 39(44): 13487-13495.
pmid: 11063585
[10] 周杨杨. 拟南芥phyA铰链区调控phyA磷酸化和功能的分子机制. 北京: 中国农业大学, 2019.
Zhou Y Y. The hinge region of Arabidopsis phyA regulates phyA phosphorylation and functions. Beijing: China Agricultural University, 2019.
[11] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712
[12] Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. Journal of Plant Research, 2016, 129(2): 123-135.
doi: 10.1007/s10265-016-0789-0 pmid: 26818948
[13] Wahlgren W Y, Golonka D, Westenhoff S, et al. Cryo-electron microscopy of Arabidopsis thaliana phytochrome A in its Pr state reveals head-to-head homodimeric architecture. Frontiers in Plant Science, 2021, 12: 663751.
[14] 张芳, 张晓枫, 王进征, 等. 植物光敏色素PHYA、PHYB研究进展. 生物学通报, 2011, 46(1): 11-14.
Zhang F, Zhang X F, Wang J Z, et al. Research progress of phytochrome PHYA and PHYB. Bulletin of Biology, 2011, 46(1): 11-14.
[15] Chen M, Tao Y, Lim J, et al. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Current Biology, 2005, 15(7): 637-642.
doi: 10.1016/j.cub.2005.02.028 pmid: 15823535
[16] Levskaya A, Weiner O D, Lim W A, et al. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461(7266): 997-1001.
doi: 10.1038/nature08446
[17] Peter E, Dick B, Baeurle S A. Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa. Nature Communications, 2010, 1(1): 122.
doi: 10.1038/ncomms1121
[18] 周峰. 植物光受体的结构域与光化学特性研究进展. 广东农业科学, 2012, 39(10): 234-236.
Zhou F. Advances in domain structure and photochemistry of plant photoreceptors. Guangdong Agricultural Sciences, 2012, 39(10): 234-236.
[19] 闫海, 周波, 李玉花. 植物的隐花色素及其光信号转导. 植物生理学通讯, 2005, 41(6): 841-846.
Yan H, Zhou B, Li Y H. Plant cryptochrome and its light signal transduction. Plant Physiology Communications, 2005, 41(6): 841-846.
[20] Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews, 2003, 103(6): 2203-2237.
pmid: 12797829
[21] Lin C T, Shalitin D. Cryptochrome structure and signal transduction. Annual Review of Plant Biology, 2003, 54(1): 469-496.
doi: 10.1146/arplant.2003.54.issue-1
[22] Kennedy M J, Hughes R M, Peteya L A, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods, 2010, 7(12): 973-975.
doi: 10.1038/nmeth.1524 pmid: 21037589
[23] Liu H T, Yu X H, Li K W, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008, 322(5907): 1535-1539.
doi: 10.1126/science.1163927
[24] Chia N, Lee S Y, Tong Y J. Optogenetic tools for microbial synthetic biology. Biotechnology Advances, 2022, 59: 107953.
[25] Huang P Y, Zhao Z H, Duan L T. Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions. Neural Regeneration Research, 2022, 17(1): 25-30.
doi: 10.4103/1673-5374.314293 pmid: 34100422
[26] Herrou J, Crosson S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nature Reviews Microbiology, 2011, 9(10): 713-723.
doi: 10.1038/nrmicro2622 pmid: 21822294
[27] Dwijayanti A, Zhang C Q, Poh C L, et al. Toward multiplexed optogenetic circuits. Frontiers in Bioengineering and Biotechnology, 2022, 9: 804563.
[28] Omelina E S, Yushkova A A, Motorina D M, et al. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. International Journal of Molecular Sciences, 2022, 23(3): 1737.
doi: 10.3390/ijms23031737
[29] Tischer D, Weiner O D. Illuminating cell signalling with optogenetic tools. Nature Reviews Molecular Cell Biology, 2014, 15(8): 551-558.
doi: 10.1038/nrm3837 pmid: 25027655
[30] Renicke C, Schuster D, Usherenko S, et al. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chemistry & Biology, 2013, 20(4): 619-626.
doi: 10.1016/j.chembiol.2013.03.005
[31] Zoltowski B D, Vaccaro B, Crane B R. Mechanism-based tuning of a LOV domain photoreceptor. Nature Chemical Biology, 2009, 5(11): 827-834.
doi: 10.1038/nchembio.210 pmid: 19718042
[32] Fraikin G Y, Strakhovskaya M G, Belenikina N S, et al. Bacterial photosensory proteins: regulatory functions and optogenetic applications. Microbiology, 2015, 84(4): 461-472.
doi: 10.1134/S0026261715040086
[33] Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochemical & Photobiological Sciences, 2022, 21(4): 493-507.
[34] Gardner K H, Correa F. How plants see the invisible. Science, 2012, 335(6075): 1451-1452.
doi: 10.1126/science.1220248 pmid: 22442470
[35] 陈慧泽, 牛靖蓉, 韩榕. 植物紫外光B受体UVR8的信号转导途径. 植物生理学报, 2021, 57(6): 1179-1188.
Chen H Z, Niu J R, Han R. Signal transduction pathways of plant ultraviolet B receptor UVR8. Plant Physiology Journal, 2021, 57(6): 1179-1188.
[36] Figueroa D, Rojas V, Romero A, et al. The rise and shine of yeast optogenetics. Yeast, 2021, 38(2): 131-146.
doi: 10.1002/yea.v38.2
[37] Padmanabhan S, Jost M, Drennan C L, et al. A new facet of vitamin B12: gene regulation by cobalamin-based photoreceptors. Annual Review of Biochemistry, 2017, 86: 485-514.
doi: 10.1146/annurev-biochem-061516-044500 pmid: 28654327
[38] Jost M, Fernández-Zapata J, Polanco M C, et al. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature, 2015, 526(7574): 536-541.
doi: 10.1038/nature14950
[39] Chatelle C, Ochoa-Fernandez R, Engesser R, et al. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synthetic Biology, 2018, 7(5): 1349-1358.
doi: 10.1021/acssynbio.7b00450 pmid: 29634242
[40] Hochrein L, Machens F, Messerschmidt K, et al. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Research, 2017, 45(15): 9193-9205.
doi: 10.1093/nar/gkx610 pmid: 28911120
[41] Raghavan A R, Salim K, Yadav V G. Optogenetic control of heterologous metabolism in E. coli. ACS Synthetic Biology, 2020, 9(9): 2291-2300.
doi: 10.1021/acssynbio.9b00454 pmid: 32786352
[42] Taslimi A, Zoltowski B, Miranda J G, et al. Optimized second-generation CRY2-CIB dimerizers and photoactivatable cre recombinase. Nature Chemical Biology, 2016, 12(6): 425-430.
doi: 10.1038/nchembio.2063 pmid: 27065233
[43] Da Silva N A, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12(2): 197-214.
doi: 10.1111/j.1567-1364.2011.00769.x
[44] Wang X, Chen X J, Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nature Methods, 2012, 9(3): 266-269.
doi: 10.1038/nmeth.1892 pmid: 22327833
[45] Zhao E M, Zhang Y F, Mehl J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 2018, 555(7698): 683-687.
doi: 10.1038/nature26141
[46] Crefcoeur R P, Yin R H, Ulm R, et al. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nature Communications, 2013, 4(1): 1779.
doi: 10.1038/ncomms2800
[47] 张萍, 魏文平, 周英, 等. 解脂耶氏酵母中光控表达系统的构建及其应用研究. 合成生物学, 2021, 2(5): 778-791.
doi: 10.12211/2096-8280.2021-018
Zhang P, Wei W P, Zhou Y, et al. Construction of a light-controlled expression system and its application in Yarrowia lipolytica. Synthetic Biology Journal, 2021, 2(5): 778-791.
doi: 10.12211/2096-8280.2021-018
[48] Yen S T, Trimmer K A, Aboul-Fettouh N, et al. CreLite: an optogenetically controlled Cre/loxP system using red light. Developmental Dynamics, 2020, 249(11): 1394-1403.
doi: 10.1002/dvdy.v249.11
[49] Fernandez-Rodriguez J, Moser F, Song M, et al. Engineering RGB color vision into Escherichia coli. Nature Chemical Biology, 2017, 13(7): 706-708.
doi: 10.1038/nchembio.2390 pmid: 28530708
[50] Zhou Y, Kong D Q, Wang X Y, et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nature Biotechnology, 2022, 40(2): 262-272.
doi: 10.1038/s41587-021-01036-w
[51] Hou X Y, Shou C T, He M Y, et al. A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharmaceutica Sinica B, 2020, 10(9): 1741-1753.
doi: 10.1016/j.apsb.2020.04.010 pmid: 33088693
[52] Magaraci M S, Veerakumar A, Qiao P, et al. Engineering Escherichia coli for light-activated cytolysis of mammalian cells. ACS Synthetic Biology, 2014, 3(12): 944-948.
doi: 10.1021/sb400174s pmid: 24933444
[1] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[2] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[3] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[4] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[5] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[6] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[7] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[8] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[9] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[10] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[11] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[12] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[13] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[14] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[15] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.