Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 52-60    DOI: 10.13523/j.cb.2312105
生物经济核心产业专题     
合成生物学发展脉络概述
李玉娟1,3,傅雄飞1,张先恩2,4,*()
1 中国科学院深圳先进技术研究院合成生物学研究所 深圳 518055
2 深圳理工大学(筹)合成生物学院 深圳 518055
3 澳门大学法学院 澳门 999078
4 中国科学院生物物理研究所生物大分子国家重点实验室 北京 100101
A Brief Overview of Synthetic Biology
Yujuan LI1,3,Xiongfei FU1,Xianen ZHANG2,4,*()
1 Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
3 Faculty of Law, University of Macau, Macau SAR 999078, China
4 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(1406 KB)   HTML
摘要:

合成生物学作为认识生命的“钥匙”、改变未来的颠覆性技术,打开了从非生命物质向生命物质转化的大门,实现生命体系的理性设计与编辑,为生命科学研究提供了新范式,促进生物技术迭代发展,成为未来生物产业发展的驱动力。经过20余年的发展,合成生物学领域已取得系列突破,创新应用逐步实现,学科体系渐成。合成生物学的发展脉络可概括为三个方向:一是使能技术与理论创新的系列突破;二是基因组合成与组装能力的迭代提升;三是细胞工厂和新生物系统的构建与应用。在此基础上,阐述合成生物学学科体系框架,展望未来发展趋势。

关键词: 合成生物学工程生物学使能技术基因组编辑学科体系    
Abstract:

Synthetic biology, as a groundbreaking and transformative technology for understanding life, has opened the door to the transformation of non-living matter into living matter. It enables the rational design and editing of biological systems, providing a new paradigm for life science research and catalyzing the iterative development of biotechnology. Over the past two decades, synthetic biology has achieved a series of breakthroughs, gradually realizing innovative applications and establishing a disciplinary framework. The development of synthetic biology can be broadly grouped into three directions: first, a series of breakthroughs in enabling technologies; second, the iterative improvement of the synthesis and assembly capabilities of biological genomes; and third, the construction and application of cell factories and novel biological systems (“build to learn” and “build to use”). Based on the progress in life sciences, we attempt to elucidate the disciplinary framework of synthetic biology, and envision future trends.

Key words: Synthetic biology    Engineering biology    Enabling technology    Genome editing    Disciplinary framework
收稿日期: 2024-01-09 出版日期: 2024-02-04
ZTFLH:  Q81  
通讯作者: * 电子信箱:zhangxe@siat.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李玉娟
傅雄飞
张先恩

引用本文:

李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.

Yujuan LI, Xiongfei FU, Xianen ZHANG. A Brief Overview of Synthetic Biology. China Biotechnology, 2024, 44(1): 52-60.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2312105        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/52

比较 生物技术 合成生物学
属性 利用生物体系造福人类,属于基因产业 利用生物体系造福人类,属于基因产业
应用 医药健康、生物工业、生物农业、生物能源、环境修复、生物材料、生物电子与生物信息,等 医药健康、生物工业、生物农业、生物能源、环境修复、生物材料、生物电子与生物信息,等
手段 单个外源基因的克隆与表达 生物设计、大规模基因组合成与组装、基因网络编辑、底盘细胞、人工智能(黑箱模型)与生物智造
形式 一个基因,一个产业:乙肝疫苗、胰岛素、干扰素、抗体药基因修饰作物,等 生物设计,多基因协同:合成疫苗及药物、精准细胞治疗、复杂代谢产品、基因网络育种、新功能生物电子、生物传感、生物材料,等
能力 初级 高级
表1  合成生物学与生物技术的关联与区别
图1  合成生物学发展脉络
图2  合成生物学学科体系框架
[1] 张先恩. 世界生命科学格局中的中国. 中国科学院院刊, 2022, 37(5): 622-635.
Zhang X E. China in global landscape of life sciences. Bulletin of Chinese Academy of Sciences, 2022, 37(5): 622-635.
[2] 张先恩. 中国合成生物学发展回顾与展望. 中国科学: 生命科学, 2019, 49(12): 1543-1572.
Zhang X E. Synthetic biology in China: review and prospects. Scientia Sinica (Vitae), 2019, 49(12): 1543-1572.
[3] 赵国屏. 合成生物学: 开启生命科学“会聚” 研究新时代. 中国科学院院刊, 2018, 33(11): 1135-1149.
Zhao G P. Synthetic biology: unsealing the convergence era of life science research. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149.
[4] D W A. Synthetic biology and the mechanism of life. Nature, 1913, 91(2272): 270-272.
[5] Cameron D E, Bashor C J, Collins J J. A brief history of synthetic biology. Nature Reviews Microbiology, 2014, 12(5): 381-390.
doi: 10.1038/nrmicro3239 pmid: 24686414
[6] Zhang X E, Liu C L, Dai J B, et al. Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66(8): 1742-1785.
doi: 10.1007/s11427-022-2214-2
[7] Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339-342.
doi: 10.1038/35002131
[8] Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403(6767): 335-338.
doi: 10.1038/35002125
[9] Zong Y Q, Zhang H M, Lyu C, et al. Insulated transcriptional elements enable precise design of genetic circuits. Nature Communications, 2017, 8(1): 52.
doi: 10.1038/s41467-017-00063-z pmid: 28674389
[10] Qin C R, Xiang Y H, Liu J, et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nature Communications, 2023, 14(1): 1500.
doi: 10.1038/s41467-023-37244-y pmid: 36932109
[11] Chen Y, Kim J K, Hirning A J, et al. Emergent genetic oscillations in a synthetic microbial consortium. Science, 2015, 349(6251): 986-989.
doi: 10.1126/science.aaa3794 pmid: 26315440
[12] Malyshev D A, Dhami K, Lavergne T, et al. A semi-synthetic organism with an expanded genetic alphabet. Nature, 2014, 509(7500): 385-388.
doi: 10.1038/nature13314
[13] Zhang Y, Ptacin J L, Fischer E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature, 2017, 551(7682): 644-647.
doi: 10.1038/nature24659
[14] Qin F F, Li B Y, Wang H, et al. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell, 2023, 186(5): 1066-1085, e36.
doi: 10.1016/j.cell.2023.02.007 pmid: 36868209
[15] Xu Y, Zhu T F. Mirror-image T 7 transcription of chirally inverted ribosomal and functional RNAs. Science, 2022, 378(6618): 405-412.
doi: 10.1126/science.abm0646
[16] Wang J Y, Doudna J A. CRISPR technology: a decade of genome editing is only the beginning. Science, 2023, 379(6629): eadd8643.
doi: 10.1126/science.add8643
[17] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[18] Wang S K, Gabel C, Siddique R, et al. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Cell, 2023, 186(19): 4204-4215, e19.
doi: 10.1016/j.cell.2023.07.010 pmid: 37557170
[19] Nielsen A A K, Der B S, Shin J, et al. Genetic circuit design automation. Science, 2016, 352(6281): aac7341.
doi: 10.1126/science.aac7341
[20] Meng F K, Ellis T. The second decade of synthetic biology: 2010-2020. Nature Communications, 2020, 11(1): 5174.
doi: 10.1038/s41467-020-19092-2 pmid: 33057059
[21] Dou J Y, Vorobieva A A, Sheffler W, et al. De novo design of a fluorescence-activating β-barrel. Nature, 2018, 561(7724): 485-491.
doi: 10.1038/s41586-018-0509-0
[22] Shen H, Fallas J A, Lynch E, et al. De novo design of self-assembling helical protein filaments. Science, 2018, 362(6415): 705-709.
doi: 10.1126/science.aau3775 pmid: 30409885
[23] Chen Z B, Boyken S E, Jia M X, et al. Programmable design of orthogonal protein heterodimers. Nature, 2019, 565(7737): 106-111.
doi: 10.1038/s41586-018-0802-y
[24] Lu P L, Min D, DiMaio F, et al. Accurate computational design of multipass transmembrane proteins. Science, 2018, 359(6379): 1042-1046.
doi: 10.1126/science.aaq1739 pmid: 29496880
[25] Thornburg Z R, Bianchi D M, Brier T A, et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell, 2022, 185(2): 345-360, e28.
doi: 10.1016/j.cell.2021.12.025 pmid: 35063075
[26] Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.
doi: 10.1038/s41586-021-03819-2
[27] Callaway E. ‘The entire protein universe’: AI predicts shape of nearly every known protein. Nature, 2022, 608(7921): 15-16.
doi: 10.1038/d41586-022-02083-2
[28] Lin Z M, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379(6637): 1123-1130.
doi: 10.1126/science.ade2574 pmid: 36927031
[29] Cui Y L, Wang Y H, Tian W Y, et al. Development of a versatile and efficient C-N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nature Catalysis, 2021, 4(5): 364-373.
doi: 10.1038/s41929-021-00604-2
[30] Cui Y L, Chen Y C, Liu X Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catalysis, 2021, 11(3): 1340-1350.
doi: 10.1021/acscatal.0c05126
[31] Huang B, Xu Y, Hu X H, et al. A backbone-centred energy function of neural networks for protein design. Nature, 2022, 602(7897): 523-528.
doi: 10.1038/s41586-021-04383-5
[32] Gu Z H, Luo X, Chen J X, et al. Hierarchical graph transformer with contrastive learning for protein function prediction. Bioinformatics, 2023, 39(7): btad410.
doi: 10.1093/bioinformatics/btad410
[33] 罗楠, 赵国屏, 刘陈立. 合成生物学的科学问题. 生命科学, 2021, 33(12): 1429-1435.
Luo N, Zhao G P, Liu C L. Scientific questions for synthetic biology. Chinese Bulletin of Life Sciences, 2021, 33(12): 1429-1435.
[34] Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016-1018.
doi: 10.1126/science.1072266 pmid: 12114528
[35] Moger-Reischer R Z, Glass J I, Wise K S, et al. Evolution of a minimal cell. Nature, 2023, 620(7972): 122-127.
doi: 10.1038/s41586-023-06288-x
[36] Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52-56.
doi: 10.1126/science.1190719 pmid: 20488990
[37] Hutchison C A, Chuang R Y, Noskov V N, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253.
doi: 10.1126/science.aad6253
[38] Pelletier J F, Sun L J, Wise K S, et al. Genetic requirements for cell division in a genomically minimal cell. Cell, 2021, 184(9): 2430-2440, e16.
doi: 10.1016/j.cell.2021.03.008
[39] Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55-58.
doi: 10.1126/science.1249252 pmid: 24674868
[40] Richardson S M, Mitchell L A, Stracquadanio G, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040-1044.
doi: 10.1126/science.aaf4557 pmid: 28280199
[41] Cover stories: making the synthetic yeast chromosomes cover and introductory spread image. Science, 2017, 355(6329): eaan1126.
doi: 10.1126/science.aan1126
[42] Zhao Y, Coelho C, Hughes A L, et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220-5236, e16.
doi: 10.1016/j.cell.2023.09.025
[43] Schindler D, Walker R S K, Jiang S Y, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell, 2023, 186(24): 5237-5253, e22.
doi: 10.1016/j.cell.2023.10.015
[44] Dai J B, Yang H M, Pretorius I S, et al. A spotlight on global collaboration in the Sc2.0 yeast consortium. Cell Genomics, 2023, 3(11): 100441.
doi: 10.1016/j.xgen.2023.100441
[45] Shao Y Y, Lu N, Wu Z F, et al. Creating a functional single-chromosome yeast. Nature, 2018, 560(7718): 331-335.
doi: 10.1038/s41586-018-0382-x
[46] Luo J C, Sun X J, Cormack B P, et al. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature, 2018, 560(7718): 392-396.
doi: 10.1038/s41586-018-0374-x
[47] Wang L B, Li Z K, Wang L Y, et al. A sustainable mouse karyotype created by programmed chromosome fusion. Science, 2022, 377(6609): 967-975.
doi: 10.1126/science.abm1964 pmid: 36007034
[48] Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.
doi: 10.1038/nature04640
[49] Luo X Z, Reiter M A, d’Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature, 2019, 567(7746): 123-126.
doi: 10.1038/s41586-019-0978-9
[50] Tang H T, Lin S M, Deng J L, et al. Engineering yeast for the de novo synthesis of jasmonates. Nature Synthesis, 2023, DOI:10.1038/S44160-023-00429-W.
doi: 10.1038/S44160-023-00429-W
[51] Galanie S, Thodey K, Trenchard I J, et al. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252): 1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[52] Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
doi: 10.1126/science.abh4049 pmid: 34554807
[53] Zheng T T, Zhang M L, Wu L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5: 388-396.
doi: 10.1038/s41929-022-00775-6
[54] Kang Q, Fang H, Xiang M J, et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production. Nature Communications, 2023, 14(1): 5177.
doi: 10.1038/s41467-023-40932-4
[55] An B L, Wang Y Y, Huang Y Y, et al. Engineered living materials for sustainability. Chemical Reviews, 2023, 123(5): 2349-2419.
doi: 10.1021/acs.chemrev.2c00512
[56] Lin Y N, Guan Y Y, Dong X, et al. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch. Metabolic Engineering, 2021, 64: 134-145.
doi: 10.1016/j.ymben.2021.01.014
[57] Tang T C, An B L, Huang Y Y, et al. Materials design by synthetic biology. Nature Reviews Materials, 2021, 6(4): 332-350.
doi: 10.1038/s41578-020-00265-w
[58] Dong Y M, Sun F J, Ping Z, et al. DNA storage: research landscape and future prospects. National Science Review, 2020, 7(6): 1092-1107.
doi: 10.1093/nsr/nwaa007 pmid: 34692128
[59] Wang D B, Cui M M, Li M, et al. Biosensors for the detection of Bacillus anthracis. Accounts of Chemical Research, 2021, 54(24): 4451-4461.
doi: 10.1021/acs.accounts.1c00407
[60] Haleem A, Javaid M, Singh R P, et al. Biosensors applications in medical field: a brief review. Sensors International, 2021, 2: 100100.
doi: 10.1016/j.sintl.2021.100100
[61] Gallup O, Ming H, Ellis T. Ten future challenges for synthetic biology. Engineering Biology, 2021, 5(3): 51-59.
doi: 10.1049/enb.v5.3
[62] Hillson N, Caddick M, Cai Y Z, et al. Building a global alliance of biofoundries. Nature Communications, 2019, 10(1): 2040.
doi: 10.1038/s41467-019-10079-2 pmid: 31068573
[63] Vickers C E, Freemont P S. Pandemic preparedness: synthetic biology and publicly funded biofoundries can rapidly accelerate response time. Nature Communications, 2022, 13(1): 453.
doi: 10.1038/s41467-022-28103-3 pmid: 35064129
[1] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[2] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[3] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[4] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[5] 李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.
[6] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[7] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[8] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[9] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[10] 包心茹, 陈卯森, 钟洁, 祁峰. CRISPR/Cas12a基因组编辑技术及应用*[J]. 中国生物工程杂志, 2023, 43(10): 32-42.
[11] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[12] 冯爽,王春伟,苏小虎. 动物基因组编辑中提升CRISPR/Cas9介导的同源重组效率研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 83-92.
[13] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[14] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[15] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.