Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (8): 30-37    DOI: 10.13523/j.cb.2304026
类器官构建与应用专题     
肺类器官模型在感染性肺系病研究中的应用及展望*
石瑾1,刘柯2,丁军颖2,**()
1 首都医科大学附属北京中医医院 北京 100010
2 首都医科大学附属北京中医医院 北京市中医药研究所 中医感染性疾病基础研究北京市重点实验室 北京 100010
Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases
SHI Jin1,LIU Ke2,DING Jun-ying2,**()
1 Department of Clinical Laboratory, Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, Beijing 100010, China
2 Beijing Key Laboratory of Basic Research with TCM on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of TCM, Capital Medical University, Beijing 100010, China
 全文: PDF(864 KB)   HTML
摘要:

肺是病毒、细菌等病原体感染和损伤的重要靶器官。近年新冠疫情让我们认识到,感染性肺系病严重威胁人类健康,甚至生命。基于肺系病发病机制及防治机制研究的迫切性,肺类器官以其精准模拟、高适用性和无伦理困扰等特点,日益成为该领域研究的得力工具。在追溯其研发轨迹的基础上,综述其构建及在不同感染肺系病中的应用,并预期其未来发展前景。

关键词: 多能干细胞肺类器官感染性肺系病病原体    
Abstract:

Lung is an important target organ for infection and injury by viruses, bacteria and other pathogens. In recent years, the novel coronavirus epidemic has made us realize that infectious pulmonary diseases pose a serious threat to human health, even life. Due to the urgency of the research on the pathogenesis and prevention mechanism of pulmonary diseases, lung organoids are increasingly becoming effective tools for research in this field due to their characteristics such as accurate simulation, high applicability and no ethical concerns. On the basis of tracing its development, this paper reviews the construction and application of lung organoid models in different infectious pulmonary diseases, and anticipates the future development prospects of the models.

Key words: Pluripotent stem cells    Lung organoids    Infectious pulmonary disease    Pathogen
收稿日期: 2023-04-13 出版日期: 2023-09-05
ZTFLH:  R-33  
基金资助: 北京市高层次公共卫生技术人才建设(2022-3-009)
通讯作者: **电子信箱:dingjunying@bjzhongyi.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石瑾
刘柯
丁军颖

引用本文:

石瑾, 刘柯, 丁军颖. 肺类器官模型在感染性肺系病研究中的应用及展望*[J]. 中国生物工程杂志, 2023, 43(8): 30-37.

SHI Jin, LIU Ke, DING Jun-ying. Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases. China Biotechnology, 2023, 43(8): 30-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2304026        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I8/30

图1  肺类器官的来源及构建
图2  肺类器官模型在感染性肺系病中的应用
[1] Gruzieva O, Jeong A, He S Z, et al. Air pollution, metabolites and respiratory health across the life-course. European Respiratory Review: an Official Journal of the European Respiratory Society, 2022, 31(165): 220038.
doi: 10.1183/16000617.0038-2022
[2] Corrò C, Novellasdemunt L, Li V S W. A brief history of organoids. American Journal of Physiology Cell Physiology, 2020, 319(1): C151-C165.
doi: 10.1152/ajpcell.00120.2020
[3] Calvert B A, Ryan Firth A L. Application of iPSC to modelling of respiratory diseases. Advances in Experimental Medicine and Biology, 2020, 1237: 1-16.
doi: 10.1007/5584_2019_430 pmid: 31468358
[4] Chen J Y, Na F F. Organoid technology and applications in lung diseases: models, mechanism research and therapy opportunities. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1066869.
doi: 10.3389/fbioe.2022.1066869
[5] Shannon J M, Mason R J, Jennings S D. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987, 931(2): 143-156.
doi: 10.1016/0167-4889(87)90200-X
[6] Köpf-Maier P, Zimmermann B. Organoid reorganization of human tumors under in vitro conditions. Cell and Tissue Research, 1991, 264(3): 563-576.
pmid: 1868523
[7] Rock J R, Onaitis M W, Rawlins E L, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 12771-12775.
[8] Barkauskas C E, Cronce M J, Rackley C R, et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 2013, 123(7): 3025-3036.
doi: 10.1172/JCI68782
[9] Wong A P, Bear C E, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012, 30(9): 876-882.
pmid: 22922672
[10] Dye B R, Hill D R, Ferguson M A H, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4: e05098.
doi: 10.7554/eLife.05098
[11] Tan Q, Choi K M, Sicard D, et al. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials, 2017, 113: 118-132.
doi: S0142-9612(16)30596-8 pmid: 27815996
[12] 李晓娜, 齐先梅, 张田甜, 等. 类器官培养技术在呼吸系统疾病中的应用. 中国病理生理杂志, 2023, 39(2):366-372.
Li X N, Qi X M, Zhang T T, et al. Application of organoid culture technology in respiratory diseases. Chinese Journal of Pathophysiology, 2023, 39(2):366-372.
[13] Hild M, Jaffe A B. Production of 3-D airway organoids from primary human airway basal cells and their use in high-throughput screening. Current Protocols in Stem Cell Biology, 2016, 37(1): IE.9.1-IE.9.15.
[14] 杨换连, 邱飞, 王国权, 等. 肿瘤类器官在药物筛选和个性化用药中的研究进展. 中国生物工程杂志, 2022, 42(6): 47-53.
Yang H L, Qiu F, Wang G Q, et al. Progress in the research and application of tumor organoids in drug screening and personalized drug treatment. China Biotechnology, 2022, 42(6): 47-53.
[15] Sachs N, Papaspyropoulos A, Zomer-van Ommen D D, et al. Long-term expanding human airway organoids for disease modeling. The EMBO Journal, 2019, 38(4): e100300.
doi: 10.15252/embj.2018100300
[16] Miller A J, Dye B R, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14(2): 518-540.
doi: 10.1038/s41596-018-0104-8
[17] Han Y L, Duan X H, Yang L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589(7841): 270-275.
doi: 10.1038/s41586-020-2901-9
[18] González Aparicio L J, López C B, Felt S A. A virus is a community: diversity within negative-sense RNA virus populations. Microbiology and Molecular Biology Reviews: MMBR, 2022, 86(3): e0008621.
[19] Han Y L, Yang L L, Lacko L A, et al. Human organoid models to study SARS-CoV-2 infection. Nature Methods, 2022, 19(4): 418-428.
doi: 10.1038/s41592-022-01453-y pmid: 35396481
[20] Salahudeen A A, Choi S S, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 2020, 588(7839): 670-675.
doi: 10.1038/s41586-020-3014-1
[21] Mannar D, Saville J W, Zhu X, et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science, 2022, 375(6582): 760-764.
doi: 10.1126/science.abn7760 pmid: 35050643
[22] Huang J, Hume A J, Abo K M, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell, 2020, 27(6): 962-973.e7.
doi: 10.1016/j.stem.2020.09.013 pmid: 32979316
[23] Ampomah P B, Lim L H K. Influenza A virus-induced apoptosis and virus propagation. Apoptosis, 2020, 25(1): 1-11.
doi: 10.1007/s10495-019-01575-3
[24] Hamilton B S, Whittaker G R. Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. Journal of Biological Chemistry, 2013, 288(24): 17399-17407.
doi: 10.1074/jbc.M112.440362 pmid: 23612974
[25] Wang D, Li C, Chiu M C, et al. SPINK 6 inhibits human airway serine proteases and restricts influenza virus activation. EMBO Molecular Medicine, 2022, 14(1): e14485.
doi: 10.15252/emmm.202114485
[26] Salgueiro L, Kummer S, Sonntag-Buck V, et al. Generation of human lung organoid cultures from healthy and tumor tissue to study infectious diseases. Journal of Virology, 2022, 96(7): e0009822.
[27] Zhao L, Yan Y Z, Dai Q S, et al. Development of novel anti-influenza thiazolides with relatively broad-spectrum antiviral potentials. Antimicrobial Agents and Chemotherapy, 2020, 64(7): e00222-20.
[28] 田树凤, 邓继岿. 儿童副流感病毒感染的临床诊治进展. 中国实用儿科杂志, 2020, 35(11): 905-908.
Tian S F, Deng J K. Progress in clinical diagnosis and treatment of parainfluenza virus infection in children. Chinese Journal of Practical Pediatrics, 2020, 35(11): 905-908.
[29] Iketani S, Shean R C, Ferren M, et al. Viral entry properties required for fitness in humans are lost through rapid genomic change during viral isolation. mBio, 2018, 9(4): e00898-18.
[30] Porotto M, Ferren M, Chen Y W, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio, 2019, 10(3): e00723-19.
[31] Collins P L, Fearns R, Graham B S. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Current Topics in Microbiology and Immunology, 2013, 372: 3-38.
doi: 10.1007/978-3-642-38919-1_1 pmid: 24362682
[32] Chen Y W, Huang S X, de Carvalho A L R T, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature Cell Biology, 2017, 19(5): 542-549.
doi: 10.1038/ncb3510
[33] Gellatly S L, Hancock R E W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 2013, 67(3): 159-173.
doi: 10.1111/2049-632X.12033 pmid: 23620179
[34] 杨晓庆, 孙平, 薛寒, 等. 铜绿假单胞菌Ⅲ型分泌系统分泌蛋白ExoU与耐药性的关系研究. 中国临床药理学杂志, 2022, 38(19): 2324-2328.
Yang X Q, Sun P, Xue H, et al. Investigation of the relationship between secretry protein ExoU of Pseudomonas aeruginosa type 3 secretion system and drug resistance. The Chinese Journal of Clinical Pharmacology, 2022, 38(19): 2324-2328.
[35] Bagayoko S, Leon-Icaza S A, Pinilla M, et al. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathogens, 2021, 17(9): e1009927.
[36] Tang M X, Liao S M, Qu J, et al. Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiology Spectrum, 2022, 10(6): e0240822.
[37] Ali M, LaCanna R, Lian Z R, et al. Transcriptional responses to injury of regenerative lung alveolar epithelium. iScience, 2022, 25(8): 104843.
doi: 10.1016/j.isci.2022.104843
[38] Sempere J, Rossi S A, Chamorro-Herrero I, et al. Minilungs from human embryonic stem cells to study the interaction of Streptococcus pneumoniae with the respiratory tract. Microbiology Spectrum, 2022, 10(3): e45322.
[39] Domínguez J, Boeree M J, Cambau E, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. The Lancet Infectious Diseases, 2023, 23(4): e122-e137.
doi: 10.1016/S1473-3099(22)00875-1
[40] 杨天立, 王向东, 白楠, 等. 肺类器官:研究人类肺部发育和疾病的新途径. 解放军医学院学报, 2021, 42(6):658-664.
Yang T L, Wang X D, Bai N, et al. Lung organoids: a new way to study human lung development and diseases. Academic Journal of Chinese Pla Medical School, 2021, 42(6):658-664.
[41] Iakobachvili N, Leon-Icaza S A, Knoops K, et al. Mycobacteria-host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117(3): 682-692.
doi: 10.1111/mmi.v117.3
[42] Pagán A J, Ramakrishnan L. The formation and function of granulomas. Annual Review of Immunology, 2018, 36: 639-665.
doi: 10.1146/annurev-immunol-032712-100022 pmid: 29400999
[43] Elkington P, Lerm M, Kapoor N, et al. In vitro granuloma models of tuberculosis: potential and challenges. The Journal of Infectious Diseases, 2019, 219(12): 1858-1866.
doi: 10.1093/infdis/jiz020
[44] Heo I, Dutta D, Schaefer D A, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiology, 2018, 3(7): 814-823.
doi: 10.1038/s41564-018-0177-8
[45] 俞东红, 曹华, 王心睿. 类器官的研究进展及应用. 生物工程学报, 2021, 37(11): 3961-3974.
Yu D H, Cao H, Wang X R. Advances and applications of organoids: a review. Chinese Journal of Biotechnology, 2021, 37(11): 3961-3974.
[1] 朱思颖, 杨洋, 李鹏东, 薛燕婷, 佘芹, 齐玲, 赵国军, 廖宝剑. 微核糖核酸簇miR-290-295促进体细胞重编程*[J]. 中国生物工程杂志, 2023, 43(4): 1-9.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[4] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[5] 夏朦, 田晓红, 柏树令, 侯伟健. 诱导多能干细胞技术的优化及其应用前景[J]. 中国生物工程杂志, 2016, 36(6): 87-91.
[6] 徐安毕, 黄来强. SidK-VatA蛋白复合物的表达和纯化[J]. 中国生物工程杂志, 2014, 34(06): 1-6.
[7] 赵丽霞, 张金吨, 张健, 李云霞, 苏杰, 孙伟, 赵高平, 戴雁峰, 郭继彤, 胡树香, WANG Wei, LIU Pen-tao, 李喜和. 利用piggyBac转座子制备牛成体多能干细胞诱导技术研究[J]. 中国生物工程杂志, 2013, 33(2): 77-82.
[8] 范勇, 骆玉梅, 陈欣杰, 孙筱放. 无饲养层和动物源蛋白的β-地中海贫血诱导多能干细胞系的建立[J]. 中国生物工程杂志, 2012, 32(6): 69-73.
[9] 屈娅 徐海伟 阴正勤. 电融合技术进展及其在干细胞研究中的应用[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[10] 牟奕,孙激. 直接重整细胞核程序的诱导性多能干细胞研究进展[J]. 中国生物工程杂志, 2009, 29(08): 124-128.
[11] 李俊玲,王世立,韩金祥. 肌源干细胞研究进展[J]. 中国生物工程杂志, 2007, 27(5): 125-130.
[12] 祝庆余, 秦鄂德, 王翠娥, 于曼, 司炳银, 范宝昌, 常国辉, 彭文明, 杨保安, 姜涛, 李豫川, 邓永强, 刘洪, 甘永华. 非典型肺炎病例标本中新型冠状病毒的分离与鉴定[J]. 中国生物工程杂志, 2003, 23(4): 106-112.
[13] 陆应玉, 李京培, 陈禹保. 聚合酶链反应对性传播病原体检测研究[J]. 中国生物工程杂志, 1999, 19(6): 71-72.
[14] 马恩诚. 艾滋病药品开发的新途径[J]. 中国生物工程杂志, 1991, 11(2): 54-55.
[15] 方苏华. 工业设备生物传感器的研制[J]. 中国生物工程杂志, 1987, 7(1): 68-68.