Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (1): 61-71    DOI: 10.13523/j.cb.2311100
生物经济核心产业专题     
合成生物学与未来食品*
徐显皓,刘龙,陈坚**()
江南大学未来食品科学中心 无锡 214122
Synthetic Biology and Future Food
Xianhao XU,Long LIU,Jian CHEN**()
Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
 全文: PDF(2346 KB)   HTML
摘要:

食品工业是保障国计民生的支柱产业。随着人口增长、环境污染、气候变化等问题的日益突出,亟需对传统的食品制造工艺进行转型升级。合成生物学的发展为食品制造工艺的变革提供了技术支持。合成生物学能够通过构建细胞工厂将可再生原料转化为重要的食品配料与组分,实现食品的绿色、高效、可持续生物制造。对未来食品制造相对于传统食品制造的特征与优势进行讨论,并列举合成生物学推动食品生物制造的前沿技术和代表性案例,最后对我国基于合成生物学的未来食品制造所面临的机遇与挑战进行展望。

关键词: 合成生物学未来食品细胞工厂人造肉人乳寡糖    
Abstract:

Food is a cornerstone industry for ensuring national prosperity and people’s well-being. However, with the increasing challenges posed by population growth, environmental pollution, and climate change, it is crucial to transform and upgrade traditional food manufacturing processes. The development of synthetic biology provides technological support for the revolution of food manufacturing processes. Synthetic biology can convert renewable raw materials into important food ingredients and components by constructing cell factories, enabling green, efficient, and sustainable bioproduction of food. This article discusses the characteristics and advantages of future food manufacturing compared to traditional methods, as well as the cutting-edge technologies and specific implementation cases driven by synthetic biology in food biomanufacturing. Finally, this review discusses the prospects and challenges facing China in the future food manufacturing based on synthetic biology.

Key words: Synthetic biology    Future food    Cell factories    Cultured meat    Human milk oligosaccharides
收稿日期: 2023-11-14 出版日期: 2024-02-04
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2022YFC2104903);国家自然科学基金(32200050)
通讯作者: ** 电子信箱:jchen@jiangnan.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐显皓
刘龙
陈坚

引用本文:

徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.

Xianhao XU, Long LIU, Jian CHEN. Synthetic Biology and Future Food. China Biotechnology, 2024, 44(1): 61-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2311100        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I1/61

图1  基于合成生物学的未来食品制造
图2  基于合成生物学的细胞工厂构建流程
图3  乳蛋白的发酵合成工艺
图4  2'-FL的合成途径及常用改造策略
图5  7-DHC的合成途径及常用改造策略
[1] 陈坚. 中国食品科技: 从2020到2035. 中国食品学报, 2019, 19(12): 1-5.
Chen J. Food science and technology in China: from 2020 to 2035. Journal of Chinese Institute of Food Science and Technology, 2019, 19(12): 1-5.
[2] 陈坚. 未来食品: 任务与挑战. 中国食物与营养, 2022, 28(7): 5-6.
Chen J. Future foods: tasks and challenges. Food and Nutrition in China, 2022, 28(7): 5-6.
[3] 李寅. 合成生物制造2022. 生物工程学报, 2023, 39(3): 807-841.
Li Y. Biomanufacturing driven by engineered organisms(2022). Chinese Journal of Biotechnology, 2023, 39(3): 807-841.
[4] Cameron D E, Bashor C J, Collins J J. A brief history of synthetic biology. Nature Reviews Microbiology, 2014, 12(5): 381-390.
doi: 10.1038/nrmicro3239 pmid: 24686414
[5] Lv X Q, Wu Y K, Gong M Y, et al. Synthetic biology for future food: research progress and future directions. Future Foods, 2021, 3: 100025.
doi: 10.1016/j.fufo.2021.100025
[6] Zhang Q W, Liu Z M, Xia H Z, et al. Engineered Bacillus subtilis for the de novo production of 2'-fucosyllactose. Microbial Cell Factories, 2022, 21(1): 110.
doi: 10.1186/s12934-022-01838-w
[7] Marcellin E, Angenent L T, Nielsen L K, et al. Recycling carbon for sustainable protein production using gas fermentation. Current Opinion in Biotechnology, 2022, 76: 102723.
doi: 10.1016/j.copbio.2022.102723
[8] Järviö N, Parviainen T, Maljanen N L, et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nature Food, 2021, 2(12): 1005-1013.
doi: 10.1038/s43016-021-00418-2
[9] Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
doi: 10.1126/science.abh4049 pmid: 34554807
[10] Guan X, Lei Q Z, Yan Q Y, et al. Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 2021, 3: 100032.
doi: 10.1016/j.fufo.2021.100032
[11] Han T, Nazarbekov A, Zou X, et al. Recent advances in systems metabolic engineering. Current Opinion in Biotechnology, 2023, 84: 103004.
doi: 10.1016/j.copbio.2023.103004
[12] Xu X H, Li X L, Liu Y F, et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nature Chemical Biology, 2020, 16(11): 1261-1268.
doi: 10.1038/s41589-020-0637-3
[13] Dervyn E, Planson A G, Tanaka K, et al. Greedy reduction of Bacillus subtilis genome yields emergent phenotypes of high resistance to a DNA damaging agent and low evolvability. Nucleic Acids Research, 2023, 51(6): 2974-2992.
doi: 10.1093/nar/gkad145
[14] Michalik S, Reder A, Richts B, et al. The Bacillus subtilis minimal genome compendium. ACS Synthetic Biology, 2021, 10(10): 2767-2771.
doi: 10.1021/acssynbio.1c00339 pmid: 34587446
[15] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[16] Paley S, Karp P D. The BioCyc metabolic network explorer. BMC Bioinformatics, 2021, 22(1): 208.
doi: 10.1186/s12859-021-04132-5 pmid: 33882841
[17] UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research, 2023, 51(D1): D523-D531.
doi: 10.1093/nar/gkac1052
[18] Berman H M, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Research, 2000, 28(1): 235-242.
doi: 10.1093/nar/28.1.235 pmid: 10592235
[19] Karp P D, Midford P E, Billington R, et al. Pathway tools version 23.0 update: software for pathway/genome informatics and systems biology. Briefings in Bioinformatics, 2021, 22(1): 109-126.
doi: 10.1093/bib/bbz104 pmid: 31813964
[20] Letunic I, Yamada T, Kanehisa M, et al. iPath: interactive exploration of biochemical pathways and networks. Trends in Biochemical Sciences, 2008, 33(3): 101-103.
doi: 10.1016/j.tibs.2008.01.001 pmid: 18276143
[21] Li L, Jiang W H, Lu Y H. A modified gibson assembly method for cloning large DNA fragments with high GC contents. Methods in Molecular Biology, 2018, 1671: 203-209.
doi: 10.1007/978-1-4939-7295-1_13 pmid: 29170961
[22] Paul B, Montoya G. CRISPR-Cas12a: functional overview and applications. Biomedical Journal, 2020, 43(1): 8-17.
doi: S2319-4170(19)30505-0 pmid: 32200959
[23] Cai P, Duan X P, Wu X Y, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Research, 2021, 49(13): 7791-7805.
doi: 10.1093/nar/gkab535
[24] Salis H M. The ribosome binding site calculator. Methods in Enzymology, 2011, 498: 19-42.
doi: 10.1016/B978-0-12-385120-8.00002-4 pmid: 21601672
[25] Xie S W, Zhan F Y, Zhu J J, et al. Discovery of norbornene as a novel hydrophobic tag applied in protein degradation. Angewandte Chemie (International ed. in English), 2023, 62(13): e202217246.
[26] Deng J Y, Chen C M, Gu Y, et al. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55: 179-190.
doi: 10.1016/j.ymben.2019.07.008
[27] Tian R Z, Liu Y F, Chen J R, et al. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55: 131-141.
doi: 10.1016/j.ymben.2019.07.001
[28] Tickman B I, Burbano D A, Chavali V P, et al. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Systems, 2022, 13(3): 215-229, e8.
doi: 10.1016/j.cels.2021.10.008
[29] Gao C, Xu P, Ye C, et al. Genetic circuit-assisted smart microbial engineering. Trends in Microbiology, 2019, 27(12): 1011-1024.
doi: S0966-842X(19)30186-6 pmid: 31421969
[30] Li F R, Yuan L, Lu H Z, et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nature Catalysis, 2022, 5(8): 662-672.
doi: 10.1038/s41929-022-00798-z
[31] Sun G Y, Qu L S, Azi F, et al. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosensors and Bioelectronics, 2023, 225: 115107.
doi: 10.1016/j.bios.2023.115107
[32] Donovan S M. Human milk proteins: composition and physiological significance. Nestle Nutrition Institute Workshop Series. 2019, 90: 93-101.
[33] 周正富, 庞雨, 张维, 等. 乳蛋白重组表达与人造奶生物合成: 全球专利分析与技术发展趋势. 合成生物学, 2021, 2(5): 764-777.
doi: 10.12211/2096-8280.2021-057
Zhou Z F, Pang Y, Zhang W, et al. Recombinant expression of milk proteins and biosynthesis of animal-free milk: analysis on related patents and trend for technology development. Synthetic Biology Journal, 2021, 2(5): 764-777.
doi: 10.12211/2096-8280.2021-057
[34] 黄建东, 崔金明, 蒙海林, 等. 乳酸菌合成牛奶蛋白的关键技术开发. 广州, 广州中国科学院先进技术研究所, 2018-07-13.
Huang J D, Cui J M, Meng H L, et al. Development of key technologies for the synthesis of milk proteins by lactic acid bacteria. Guangzhou, Guangzhou Institute of Advanced Technology, 2018-07-13.
[35] Wu Y K, Li Y, Zhang Y T, et al. Efficient protein expression and biosynthetic gene cluster regulation in Bacillus subtilis driven by a T7-BOOST system. ACS Synthetic Biology, 2023, 12(11): 3328-3339.
doi: 10.1021/acssynbio.3c00331
[36] Deng M T, Lv X Q, Liu L, et al. Efficient bioproduction of human milk alpha-lactalbumin in Komagataella phaffii. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2664-2672.
doi: 10.1021/acs.jafc.1c07908
[37] Lv X Q, Cui S X, Chen J, et al. Cascaded de novo biosynthesis of lacto-proteins from CO2 by engineered Pichia pastoris. Green Chemistry, 2023, 25(14): 5460-5469.
doi: 10.1039/D3GC00867C
[38] Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 2012, 22(9): 1147-1162.
doi: 10.1093/glycob/cws074 pmid: 22513036
[39] Das R, Mukhopadhyay B. Chemical O-glycosylations: an overview. ChemistryOpen, 2016, 5(5): 401-433.
pmid: 27777833
[40] McKay M J, Nguyen H M. Recent advances in transition metal-catalyzed glycosylation. ACS Catalysis, 2012, 2(8): 1563-1595.
pmid: 22924154
[41] Cho J S, Kim G B, Eun H, et al. Designing microbial cell factories for the production of chemicals. JACS Au, 2022, 2(8): 1781-1799.
doi: 10.1021/jacsau.2c00344 pmid: 36032533
[42] Lin L, Gong M Y, Liu Y F, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2'-fucosyllactose. Bioresource Technology, 2022, 351: 126949.
doi: 10.1016/j.biortech.2022.126949
[43] Ni Z J, Wu J Y, Li Z K, et al. Enhanced bioproduction of fucosylated oligosaccharide 3-fucosyllactose in engineered Escherichia coli with an improved de novo pathway. Bioscience, Biotechnology, and Biochemistry, 2021, 85(7): 1772-1781.
doi: 10.1093/bbb/zbab074
[44] Zhang P, Zhu Y Y, Li Z Y, et al. Designing a highly efficient biosynthetic route for lacto-N-neotetraose production in Escherichia coli. Journal of Agricultural and Food Chemistry, 2022, 70(32): 9961-9968.
doi: 10.1021/acs.jafc.2c04416 pmid: 35938974
[45] Li Z Y, Zhu Y Y, Zhang P, et al. Pathway optimization and uridine 5'-triphosphate regeneration for enhancing lacto-N-tetraose biosynthesis in engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2022, 70(25): 7727-7735.
doi: 10.1021/acs.jafc.2c02426
[46] Zhang J M, Zhu Y Y, Zhang W L, et al. Efficient production of a functional human milk oligosaccharide 3'-sialyllactose in genetically engineered Escherichia coli. ACS Synthetic Biology, 2022, 11(8): 2837-2845.
doi: 10.1021/acssynbio.2c00243
[47] Drouillard S, Mine T, Kajiwara H, et al. Efficient synthesis of 6'-sialyllactose, 6, 6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydrate Research, 2010, 345(10): 1394-1399.
doi: 10.1016/j.carres.2010.02.018 pmid: 20231015
[48] Hollands K, Baron C M, Gibson K J, et al. Engineering two species of yeast as cell factories for 2'-fucosyllactose. Metabolic Engineering, 2019, 52: 232-242.
doi: S1096-7176(18)30279-9 pmid: 30557615
[49] EFSA Panel on Nutrition, Novel Foods and Food Allergens NDA, Turck D, Bohn T, et al. Safety of 2'-fucosyllactose (2'-FL) produced by a derivative strain (APC199) of Corynebacterium glutamicum ATCC 13032 as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal European Food Safety Authority, 2022, 20(12): e07647.
[50] Wan L, Zhu Y Y, Li W, et al. Combinatorial modular pathway engineering for guanosine 5'-diphosphate-l-fucose production in recombinant Escherichia coli. Journal of Agricultural and Food Chemistry, 2020, 68(20): 5668-5675.
doi: 10.1021/acs.jafc.0c01064 pmid: 32336091
[51] Deng J Y, Gu L Y, Chen T C, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2'-fucosyllactose synthesis in Bacillus subtilis. ACS Synthetic Biology, 2019, 8(10): 2418-2427.
doi: 10.1021/acssynbio.9b00314
[52] Parschat K, Schreiber S, Wartenberg D, et al. High-titer de novo biosynthesis of the predominant human milk oligosaccharide 2'-fucosyllactose from sucrose in Escherichia coli. ACS Synthetic Biology, 2020, 9(10): 2784-2796.
doi: 10.1021/acssynbio.0c00304
[53] Dong X M, Li N, Liu Z M, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2477-2484.
doi: 10.1021/acs.jafc.9b07642
[54] Yu W W, Jin K, Wu Y K, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis. Nucleic Acids Research, 2022, 50(11): 6587-6600.
doi: 10.1093/nar/gkac476
[55] Wan L, Zhu Y Y, Zhang W L, et al. Phase-separated synthetic organelles based on intrinsically disordered protein domain for metabolic pathway assembly in Escherichia coli. ACS Nano, 2023, 17(11): 10806-10816.
doi: 10.1021/acsnano.3c02333 pmid: 37191277
[56] Chen R L, Wan L, Zhu Y Y, et al. Spatial organization of pathway enzymes via self-assembly to improve 2'-fucosyllactose biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering, 2023, 120(2): 524-535.
doi: 10.1002/bit.v120.2
[57] Choi Y H, Kim J H, Park B S, et al. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnology and Bioengineering, 2016, 113(8): 1666-1675.
doi: 10.1002/bit.25944 pmid: 26804479
[58] Enam F, Mansell T J. Linkage-specific detection and metabolism of human milk oligosaccharides in Escherichia coli. Cell Chemical Biology, 2018, 25(10): 1292-1303, e4.
doi: 10.1016/j.chembiol.2018.06.002
[59] Baptistella L H B, Sousa I M O, Gushikem Y, et al. Chromium (VI) adsorbed on SiO2/ZrO2, a new supported reagent for allylic oxidations. Tetrahedron Letters, 1999, 40(14): 2695-2698.
doi: 10.1016/S0040-4039(99)00335-4
[60] Lang C, Veen M. Preparation of 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof in transgenic organisms: US, US2006240508A1. 2017-07-13[2023-11-11]. https://wenku.baidu.com/view/32a41bb6fe0a79563c1ec5da50e2524de518d024?fr=xueshu&_wkts_=1699711460882&needWelcomeRecommand=1.
[61] 张莹, 张璐, 刘夺, 等. 7-脱氢胆甾醇合成功能模块与底盘细胞的适配性. 生物工程学报, 2014, 30(1): 30-42.
pmid: 24818477
Zhang Y, Zhang L, Liu D, et al. Match of functional module with chassis in 7-dehydrocholesterol synthesis. Chinese Journal of Biotechnology, 2014, 30(1): 30-42.
pmid: 24818477
[62] Guo X J, Yao M D, Xiao W H, et al. Compartmentalized reconstitution of post-squalene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12: 663973.
doi: 10.3389/fmicb.2021.663973
[63] Qu L S, Xiu X, Sun G Y, et al. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol. Biotechnology and Bioengineering, 2022, 119(5): 1278-1289.
doi: 10.1002/bit.v119.5
[64] Xiu X, Sun Y, Wu Y K, et al. Modular remodeling of sterol metabolism for overproduction of 7-dehydrocholesterol in engineered yeast. Bioresource Technology, 2022, 360: 127572.
doi: 10.1016/j.biortech.2022.127572
[65] Xue J K, Zhou J W, Li J H, et al. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins. Bioresource Technology, 2023, 370: 128556.
doi: 10.1016/j.biortech.2022.128556
[66] Shao Y R, Xue C L, Liu W Q, et al. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis. Bioresource Technology, 2022, 363: 127884.
doi: 10.1016/j.biortech.2022.127884
[67] Yin X Q, Li Y Y, Zhou J W, et al. Enhanced production of transglutaminase in Streptomyces mobaraensis through random mutagenesis and site-directed genetic modification. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3144-3153.
doi: 10.1021/acs.jafc.1c00645
[68] Wang X L, Du J H, Zhao B C, et al. Significantly improving the thermostability and catalytic efficiency of Streptomyces mobaraenesis transglutaminase through combined rational design. Journal of Agricultural and Food Chemistry, 2021, 69(50): 15268-15278.
doi: 10.1021/acs.jafc.1c05256
[69] Sun C X, Ge J, He J, et al. Processing, quality, safety, and acceptance of meat analogue products. Engineering, 2021, 7(5): 674-678.
doi: 10.1016/j.eng.2020.10.011
[70] Vahedifar A, Wu J P. Extraction, nutrition, functionality and commercial applications of canola proteins as an underutilized plant protein source for human nutrition. Advances in Food and Nutrition Research, 2022, 101: 17-69.
doi: 10.1016/bs.afnr.2022.04.001 pmid: 35940704
[71] Gajewski J, Pavlovic R, Fischer M, et al. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nature Communications, 2017, 8: 14650.
doi: 10.1038/ncomms14650 pmid: 28281527
[72] Zhu Z W, Hu Y T, Teixeira P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3(1): 64-74.
doi: 10.1038/s41929-019-0409-1
[73] Wang K F, Shi T Q, Wang J P, et al. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils. ACS Synthetic Biology, 2022, 11(4): 1542-1554.
doi: 10.1021/acssynbio.1c00613
[74] Xu C L, Zhou Y S, Xiao Q Q, et al. Programmable RNA editing with compact CRISPR-Cas 13 systems from uncultivated microbes. Nature Methods, 2021, 18(5): 499-506.
doi: 10.1038/s41592-021-01124-4
[75] Huang B, Xu Y, Hu X H, et al. A backbone-centred energy function of neural networks for protein design. Nature, 2022, 602(7897): 523-528.
doi: 10.1038/s41586-021-04383-5
[1] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[2] 李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.
[3] 李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.
[4] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[5] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[6] 李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.
[7] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[8] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[9] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[10] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[11] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[12] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[13] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[14] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[15] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.