Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (8): 11-19    DOI: 10.13523/j.cb.2302004
类器官构建与应用专题     
骨类器官的构建及应用进展*
唐子慧1,钟畅1,段艳丽2,马瑞堉1,周平1,**()
1 兰州大学口腔医学院 兰州 730000
2 兰州大学第一临床医学院 兰州 730000
Advances in the Construction and Application of Bone Organoids
TANG Zi-hui1,ZHONG Chang1,DUAN Yan-li2,MA Rui-yu1,ZHOU Ping1,**()
1 School of Stomatology, Lanzhou University, Lanzhou 730000, China
2 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
 全文: PDF(646 KB)   HTML
摘要:

骨骼疾病如骨质疏松、骨关节炎等已成为重要的人类健康问题,需要更深入地了解相关疾病的发病机制并开发更有效的治疗方法。由于2D细胞培养和动物实验等常规研究方法的局限性,近年来发展的类器官技术受到了极大关注。类器官作为干细胞衍生的自组织3D细胞簇,可以在体外更真实地模拟组织器官的复杂结构和生物功能。目前间充质干细胞、多能干细胞等衍生的骨类器官已逐步建立,不仅为疾病建模、药物筛选和生理病理基础研究提供了良好平台,还有望为骨缺损修复带来新希望。现对不同骨类器官模型的构建及主要应用进行概述,同时讨论了骨类器官培养面临的挑战,并对其未来发展进行展望,为构建结构功能更完善的骨类器官并将其应用于生物医学研究提供参考。

关键词: 骨类器官疾病建模药物筛选再生医学    
Abstract:

Bone diseases, such as osteoporosis and osteoarthritis, have become a serious human health hazard, making it imperative to further understand the pathogenesis of related diseases and develop more effective treatments. Due to the limitations of conventional research methods such as two-dimensional cell culture and animal experiments, the organoid technology that emerged in recent years has attracted tremendous attention. As self-organized 3D clusters derived from stem cells, organoids can recapitulate the complex structure and biological function of tissues or organs in vitro. Until now, bone organoids generated from mesenchymal stem cells, pluripotent stem cells and other cell sources have been gradually established, which not only provides an excellent platform for disease modeling, drug screening as well as fundamental research of physiology and pathology, but also raises new hope for repairing bone defects. This review summarizes the construction and main applications of various bone organoid models. The challenges faced by organoid cultivation and future development prospects are also discussed, so as to provide reference for the construction and biomedical application of bone organoids with more perfect structure and functions.

Key words: Bone organoids    Disease modeling    Drug screening    Regenerative medicine
收稿日期: 2023-02-03 出版日期: 2023-09-05
ZTFLH:  Q819  
基金资助: 中国博士后科学基金面上项目(2022M721443)
通讯作者: **电子信箱:zhoup@lzu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐子慧
钟畅
段艳丽
马瑞堉
周平

引用本文:

唐子慧, 钟畅, 段艳丽, 马瑞堉, 周平. 骨类器官的构建及应用进展*[J]. 中国生物工程杂志, 2023, 43(8): 11-19.

TANG Zi-hui, ZHONG Chang, DUAN Yan-li, MA Rui-yu, ZHOU Ping. Advances in the Construction and Application of Bone Organoids. China Biotechnology, 2023, 43(8): 11-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302004        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I8/11

图1  骨类器官的构建与应用
[1] Johnston C B, Dagar M. Osteoporosis in older adults. The Medical Clinics of North America, 2020, 104(5): 873-884.
doi: S0025-7125(20)30056-0 pmid: 32773051
[2] Hunter D J, Bierma-Zeinstra S. Osteoarthritis. Lancet (London, England), 2019, 393(10182): 1745-1759.
doi: 10.1016/S0140-6736(19)30417-9
[3] Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda, Md), 2017, 32(4): 266-277.
[4] Samvelyan H J, Hughes D, Stevens C, et al. Models of osteoarthritis: relevance and new insights. Calcified Tissue International, 2021, 109(3): 243-256.
doi: 10.1007/s00223-020-00670-x
[5] 占华松, 陈跃平, 章晓云. 骨组织工程技术治疗感染性骨缺损: 优势与问题. 中国组织工程研究, 2019, 23(30): 4848-4854.
Zhan H S, Chen Y P, Zhang X Y. Bone tissue engineering in infectious bone defect: advantages and problems. Chinese Journal of Tissue Engineering Research, 2019, 23(30): 4848-4854.
[6] Kim S, Cho A N, Min S, et al. Organoids for advanced therapeutics and disease models. Advanced Therapeutics, 2019, 2(1): 1800087.
[7] Sato T, Vries R G, Snippert H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265.
doi: 10.1038/nature07935
[8] Yin X L, Mead B, Safaee H, et al. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1): 25-38.
doi: 10.1016/j.stem.2015.12.005 pmid: 26748754
[9] Chen S S, Chen X, Geng Z, et al. The horizon of bone organoid: a perspective on construction and application. Bioactive Materials, 2022, 18: 15-25.
doi: 10.1016/j.bioactmat.2022.01.048 pmid: 35387160
[10] Fu Y, Karbaat L, Wu L, et al. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Engineering Part B, Reviews, 2017, 23(6): 515-528.
doi: 10.1089/ten.teb.2016.0365
[11] Duchamp de Lageneste O, Julien A, Abou-Khalil R, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 2018, 9(1): 1-15.
doi: 10.1038/s41467-017-02088-w
[12] Yang Y H K. Aging of mesenchymal stem cells: implication in regenerative medicine. Regenerative Therapy, 2018, 9: 120-122.
doi: 10.1016/j.reth.2018.09.002
[13] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[14] Kim W, Gwon Y, Park S, et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioactive Materials, 2023, 19: 50-74.
doi: 10.1016/j.bioactmat.2022.03.039 pmid: 35441116
[15] Velasco V, Ali Shariati S, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsystems & Nanoengineering, 2020, 6: 76.
[16] Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 2017, 21(10): 2661-2670.
doi: S2211-1247(17)31625-X pmid: 29212014
[17] 冯晓莹, 孟倩, 陈巍, 等. 类器官芯片在医学研究中的应用进展. 中国生物工程杂志, 2022, 42(Z1): 112-118.
Feng X Y, Meng Q, Chen W, et al. Application progress of organoid-on-a-chip in medical research. China Biotechnology, 2022, 42(Z1): 112-118.
[18] Parihar A, Pandita V, Khan R. 3D printed human organoids: high throughput system for drug screening and testing in current COVID-19 pandemic. Biotechnology and Bioengineering, 2022, 119(10): 2669-2688.
doi: 10.1002/bit.v119.10
[19] Capeling M M, Czerwinski M, Huang S, et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Reports, 2019, 12(2): 381-394.
doi: S2213-6711(18)30520-4 pmid: 30612954
[20] Cruz-Acuña R, Quirós M, Farkas A E, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 2017, 19(11): 1326-1335.
doi: 10.1038/ncb3632 pmid: 29058719
[21] Giger S, Hofer M, Miljkovic-Licina M, et al. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioengineering, 2022, 6(3): 036101.
[22] Cheng Y H, Dong J C, Bian Q. Small molecules for mesenchymal stem cell fate determination. World Journal of Stem Cells, 2019, 11(12): 1084-1103.
doi: 10.4252/wjsc.v11.i12.1084
[23] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1): 17-29.
doi: 10.1016/s0092-8674(01)00622-5 pmid: 11792318
[24] Reible B, Schmidmaier G, Moghaddam A, et al. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro. International Journal of Molecular Sciences, 2018, 19(6): 1674.
doi: 10.3390/ijms19061674
[25] Yang C, Tibbitt M W, Basta L, et al. Mechanical memory and dosing influence stem cell fate. Nature Materials, 2014, 13(6): 645-652.
doi: 10.1038/nmat3889 pmid: 24633344
[26] Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
doi: 10.1038/nature01658
[27] Kandarakov O, Belyavsky A, Semenova E. Bone marrow niches of hematopoietic stem and progenitor cells. International Journal of Molecular Sciences, 2022, 23(8): 4462.
doi: 10.3390/ijms23084462
[28] Seita J, Weissman I L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2(6): 640-653.
doi: 10.1002/wsbm.86 pmid: 20890962
[29] Akiva A, Melke J, Ansari S, et al. An organoid for woven bone. Advanced Functional Materials, 2021, 31(17): 2010524.
[30] Zhang J H, Griesbach J, Ganeyev M, et al. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication, 2022, 14(3): 035018.
doi: 10.1088/1758-5090/ac73b9
[31] Nilsson Hall G, Mendes L F, Gklava C, et al. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 7(2): 1902295.
[32] Long T W, Luís F M, Chen X K, et al. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Research & Therapy, 2021, 12(1): 513.
[33] Xie C, Liang R J, Ye J C, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials, 2022, 288: 121741.
doi: 10.1016/j.biomaterials.2022.121741
[34] Crispim J F, Ito K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomaterialia, 2021, 128: 236-249.
doi: 10.1016/j.actbio.2021.04.008
[35] Sun Y, Wu Q, Dai K R, et al. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Signal Transduction and Targeted Therapy, 2021, 6(1): 1-4.
doi: 10.1038/s41392-020-00451-w
[36] Vallmajo-Martin Q, Broguiere N, Millan C, et al. PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Advanced Functional Materials, 2020, 30(48): 1910282.
doi: 10.1002/adfm.v30.48
[37] Khan A O, Rodriguez-Romera A, Reyat J S, et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discovery, 2023, 13(2): 364-385.
doi: 10.1158/2159-8290.CD-22-0199
[38] 王强, 吴德升. 小鼠骨质疏松模型建立方法的研究进展. 中国脊柱脊髓杂志, 2021, 31(6):572-576.
Wang Q, Wu D S. Research progress in the establishment of mouse osteoporosis model. Chinese Journal of Spine and Spinal Cord, 2021, 31(6):572-576.
[39] Iordachescu A, Hughes E A B, Joseph S, et al. Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. Npj Microgravity, 2021, 7(1): 1-21.
doi: 10.1038/s41526-020-00129-1
[40] Al-Modawi R N, Brinchmann J E, Karlsen T A. Multi-pathway protective effects of microRNAs on human chondrocytes in an in vitro model of osteoarthritis. Molecular Therapy Nucleic Acids, 2019, 17: 776-790.
doi: 10.1016/j.omtn.2019.07.011
[41] Szponder T, Latalski M, Danielewicz A, et al. Osteoarthritis: pathogenesis, animal models, and new regenerative therapies. Journal of Clinical Medicine, 2022, 12(1): 5.
doi: 10.3390/jcm12010005
[42] Tassey J, Sarkar A, Van Handel B, et al. A single-cell culture system for dissecting microenvironmental signaling in development and disease of cartilage tissue. Frontiers in Cell and Developmental Biology, 2021, 9: 725854.
doi: 10.3389/fcell.2021.725854
[43] van Hoolwerff M, Rodríguez Ruiz A, Bouma M, et al. High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. Science Advances, 2021, 7(45): eabg8583.
[44] Rothbauer M, Byrne R A, Schobesberger S, et al. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab on a Chip, 2021, 21(21): 4128-4143.
doi: 10.1039/d1lc00130b pmid: 34505620
[45] Limraksasin P, Kondo T, Zhang M L, et al. In vitro fabrication of hybrid bone/cartilage complex using mouse induced pluripotent stem cells. International Journal of Molecular Sciences, 2020, 21(2): 581.
doi: 10.3390/ijms21020581
[46] O’Connor S K, Katz D B, Oswald S J, et al. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Engineering Part A, 2021, 27(15-16): 1099-1109.
doi: 10.1089/ten.TEA.2020.0273 pmid: 33191853
[47] Hall G N, Tam W L, Andrikopoulos K S, et al. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials, 2021, 273: 120820.
doi: 10.1016/j.biomaterials.2021.120820
[48] Veys C, Benmoussa A, Contentin R, et al. Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3D organoids. International Journal of Molecular Sciences, 2021, 22(11): 5590.
doi: 10.3390/ijms22115590
[49] Subramaniam D, Angulo P, Ponnurangam S, et al. Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death & Disease, 2020, 11(2): 149.
[50] He A N, Huang Y J, Cheng W Y, et al. Organoid culture system for patient-derived lung metastatic osteosarcoma. Medical Oncology, 2020, 37(11): 1-9.
doi: 10.1007/s12032-019-1328-3
[51] Visconti R J, Kolaja K, Cottrell J A. A functional three-dimensional microphysiological human model of myeloma bone disease. Journal of Bone and Mineral Research, 2021, 36(10): 1914-1930.
doi: 10.1002/jbmr.v36.10
[52] Abraham D M, Herman C, Witek L, et al. Self-assembling human skeletal organoids for disease modeling and drug testing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2022, 110(4): 871-884.
doi: 10.1002/jbm.b.v110.4
[53] Nie J H, Yang T, Li H, et al. Frequently expressed glypican-3 as a promising novel therapeutic target for osteosarcomas. Cancer Science, 2022, 113(10): 3618-3632.
doi: 10.1111/cas.v113.10
[54] He Y N, Li F, Jiang P, et al. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioactive Materials, 2023, 21: 223-238.
doi: 10.1016/j.bioactmat.2022.08.012
[55] Heo D N, Hospodiuk M, Ozbolat I T. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomaterialia, 2019, 95: 348-356.
doi: S1742-7061(19)30159-X pmid: 30831326
[56] Park Y, Cheong E, Kwak J G, et al. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7(4): eabd6495.
doi: 10.1126/sciadv.abd6495
[57] He Y Q, Li H L, Yu Z C, et al. Exosomal let-7f-5p derived from mineralized osteoblasts promotes the angiogenesis of endothelial cells via the DUSP1/Erk1/ 2 signaling pathway. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16(12): 1184-1195.
doi: 10.1002/term.v16.12
[58] Hu W X, Lazar M A. Modelling metabolic diseases and drug response using stem cells and organoids. Nature Reviews Endocrinology, 2022, 18(12): 744-759.
doi: 10.1038/s41574-022-00733-z pmid: 36071283
[59] Banh L, Cheung K K, Chan M W Y, et al. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis and Cartilage, 2022, 30(8): 1050-1061.
doi: 10.1016/j.joca.2022.03.012
[60] Skardal A, Murphy S V, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7(1): 1-16.
doi: 10.1038/s41598-016-0028-x
[61] Hendriks D, Clevers H, Artegiani B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell, 2020, 27(5): 705-731.
doi: 10.1016/j.stem.2020.10.014 pmid: 33157047
[62] Jacob F, Salinas R D, Zhang D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell, 2020, 180(1): 188-204.e22.
doi: S0092-8674(19)31321-2 pmid: 31883794
[1] 王玥, 施慧琳, 靳晨琦, 徐萍. 类器官领域发展现状及展望*[J]. 中国生物工程杂志, 2023, 43(8): 1-10.
[2] 杨换连,邱飞,王国权,刁勇. 肿瘤类器官在药物筛选和个性化用药中的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 47-53.
[3] 郑颖,邓诗碧,陈方. 干细胞与再生医学技术发展态势研究[J]. 中国生物工程杂志, 2022, 42(4): 111-119.
[4] 冯晓莹,孟倩,陈巍,余磊,黄卫人. 类器官芯片在医学研究中的应用进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 112-118.
[5] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[6] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[7] 王景丽,丁真真,刘辉,唐延婷. 以番茄斑萎病毒核蛋白为靶点的荧光偏振药物筛选体系的建立及应用 *[J]. 中国生物工程杂志, 2018, 38(11): 18-24.
[8] 朱云鹏, 王鹏, 夏博然, 唐延婷, 王权. SARS冠状病毒主蛋白酶抑制剂的筛选及抑制动力学研究[J]. 中国生物工程杂志, 2016, 36(4): 35-42.
[9] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[10] 史文芳, 冯悦, 魏大巧, 夏雪山. 丙型肝炎病毒靶向药物及抗病毒药物筛选[J]. 中国生物工程杂志, 2011, 31(11): 95-101.
[11] 周丽宏, 陈自强, 黄国友, 翟晓, 陈咏梅, 徐峰, 卢天健. 细胞打印技术及应用[J]. 中国生物工程杂志, 2010, 30(12): 95-104.
[12] 蔡怀涵 王璐 谢元翼 刘旭东 宋青. 细胞核受体LXRβ的体外酶标测活方法的建立与应用[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[13] 谢桂煌 赵声兰 陈朝银. 假病毒技术用于抗HIV-1药物筛选及抗药性分析[J]. 中国生物工程杂志, 2010, 30(03): 95-99.
[14] 史继静 刘朝奇 邹坤 杨祖伟 高明星 杨凡. 人IL-6 /sIL-6R 结合分子模型的建立及在药物筛选中的应用[J]. 中国生物工程杂志, 2009, 29(11): 60-65.
[15] 邱胜红 黄思超 蔡绍晖. 斑马鱼在抗肿瘤血管生成研究中的应用[J]. 中国生物工程杂志, 2009, 29(10): 98-101.