Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 62-69    DOI: 10.13523/j.cb.20191107
技术与方法     
建立多重液相基因芯片方法快速检测狐狸、水貂成分 *
陈茹1,**(),段燕喻1,高小博2,刘志玲1,阳静1,梅明珠1,谭鑫3,骆海燕2
1 广州海关技术中心 广州 510623
2 国家卫生健康委科学技术研究所 北京 100081
3 中山大学生命科学学院 广州 510275
Development of a Multiplex Liquidchip Assay for Rapid Identification of Fox and Mink Ingredients
CHEN Ru1,**(),DUAN Yan-yu1,GAO Xiao-bo2,LIU Zhi-ling1,YANG Jing1,MEI Ming-zhu1,TAN Xin3,LUO Hai-yan2
1 Technical Center, Guangzhou Customs District People’s Republic of China, Guangzhou 510623, China;
2 National Research Institute for Family Planning, Beijing 100081, China
3 School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
 全文: PDF(602 KB)   HTML
摘要:

基于xMAP液相芯片新型生物技术平台,分别以狐狸线粒体DNA D-loop区序列、水貂线粒体DNA细胞色素b基因序列为模板设计特异扩增引物和探针,并对探针进行锁核酸修饰,建立了二重xMAP液相基因芯片方法,用于快速检测狐狸和水貂源性成分。该法能准确鉴定鉴别狐狸和水貂DNA,对其他18种动物物种DNA均呈检测阴性,对狐狸、水貂DNA的检测低限分别为2.8pg/μl、0.9pg/μl,对肉类混样检出限为0.05%(m/m)。对目标源性DNA含量为1%(V/V)的32份饲料与食品核酸添加样本均呈对应目标检测阳性。结果表明,该方法特异性强、灵敏度高,适用于食品与饲料领域相关原料和产品的质量与安全检验。

关键词: xMAP液相基因芯片狐狸成分水貂成分锁核酸(LNA)    
Abstract:

A novel nucleic acid detection method, based on the xMAP (flexible multi-analyte profiling) technology platform, was developed for high-throughput and simultaneous identification of fox and mink ingredients in products of animal origin. A duplex xMAP assay was established, the primers and probes were designed targeting a fox mitochondrial D-loop gene or a mink mitochondrial cytochrome b gene. The probes were incorporated with locked nucleic acids to improve detection efficiency. The assay accurately identified fox and mink DNA, without cross reactions with DNA samples of eighteen nontarget animal species. The LOD on purified fox and mink DNA was evaluated as 2.8pg/μl and 0.9pg/μl, respectively. The detection sensitivity on samples of experimental meat mixtures was demonstrated to be 0.05% (m/m). The assay successfully detected 32 mocked positive DNA sample of food and feeds, which each was made by adding fox DNA or mink DNA at 1% (V/V) proportion of the same concentration. In conclusion, the duplex xMAP assay provided rapid identification of fox and mink ingredients with high specificity and high sensitivity. The technique is suitable to be applied in food and feeds quality assurance systems and safety inspections.

Key words: xMAP technology    Fox ingredient    Mink ingredient    Locked nucleic acid (LNA)
收稿日期: 2019-04-09 出版日期: 2019-12-17
ZTFLH:  Q819  
基金资助: * 广州市科技计划(201707010487);原广东出入境检验检疫局科技项目(2018GDK04)
通讯作者: 陈茹     E-mail: gd_chenr@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈茹
段燕喻
高小博
刘志玲
阳静
梅明珠
谭鑫
骆海燕

引用本文:

陈茹,段燕喻,高小博,刘志玲,阳静,梅明珠,谭鑫,骆海燕. 建立多重液相基因芯片方法快速检测狐狸、水貂成分 *[J]. 中国生物工程杂志, 2019, 39(11): 62-69.

CHEN Ru,DUAN Yan-yu,GAO Xiao-bo,LIU Zhi-ling,YANG Jing,MEI Ming-zhu,TAN Xin,LUO Hai-yan. Development of a Multiplex Liquidchip Assay for Rapid Identification of Fox and Mink Ingredients. China Biotechnology, 2019, 39(11): 62-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191107        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/62

物种 寡核苷酸与序列(5'- 3') 扩增产物分子量(bp)
狐狸 上游引物: GTGCATTACTGCTATG 118
下游引物: biotin-ACGTGCAGTCATGTATG
探针: AmM-GACAT(A/G)CTA+TGTTTA+ATCTTACA*
水貂 上游引物: AACCAAGAACATACTCAC 186
下游引物: biotin-CTTATCTCCTCTTGCCTT
探针: AmM-CAAG+CAA+CTCATCCA*
表1  二重xMAP液相基因芯片方法扩增引物与探针
图1  二重xMAP液相基因芯片特异性检测结果
图2  二重xMAP液相基因芯片方法敏感性试验检测低限结果
检测值 检测目标 样品
1%* 0.1%* 0.05%* Beef Blank control
MFI (CV%) 狐狸成分 1 833(10%) 493 (16%) 192 (12%) 17 16
水貂成分 2 585 (5%) 880 (14%) 391(23%) 57 30
表2  人工制备肉类混样检测结果
样品 数量 检测结果(MFI值)
狐狸成分 水貂成分
原样品 模拟阳性样品 原样品 模拟阳性样品
食品 8 14~35 154~643 15~34 353~624
饲料 8 5~29 199~435 8~27 476~713
空白对照 3 11~26 7~33
表3  食品与饲料模拟阳性核酸样品检测结果
[1] 刘艳艳, 李会荣, 胡悦 , 等. 饲料中狐狸、水貂、貉子和狗源性的五重实时荧光PCR检测方法的建立. 中国生物工程杂志, 2017,37(12):67-76.
Liu Y Y, Li H R, Hu Y , et al. Multiplex fluorescent real-time PCR detection of fox, mink, raccoon and dog derived materials in feedstuff. China Biotechnology, 2017,37(12):67-76.
[2] 刘少宁, 陈智, 张志民 , 等. 鉴别绵羊肉中狐狸源性成分的环介导等温扩增检测方法的建立. 中国食品卫生杂志, 2016,28(1):75-78.
Liu S N, Chen Z, Zhang Z M , et al. Development of a LAMP method for the identification of fox-derived ingredients in mutton. Chinese Journal of Food Hygiene, 2016,28(1):75-78.
[3] Dalmasso A, Fontanella E, Piatti P , et al. A multiplex PCR assay for the identification of animal species in feedstuffs. Molecular and Cellular Probes, 2004,18(2):81-87.
doi: 10.1016/j.mcp.2003.09.006
[4] Cawthraw S, Saunders G C, Martin T C , et al. Real-time PCR detection and identification of prohibited mammalian and avian material in animal feed. Journal of Food Protection, 2009,72(5):1055-1062.
doi: 10.4315/0362-028x-72.5.1055 pmid: 19517734
[5] Floren C, Wiedemann I, Brenig B , et al. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chemistry, 2015,173:1054-1058.
doi: 10.1016/j.foodchem.2014.10.138 pmid: 25466124
[6] Lin C C, Fung L L, Chan P K , et al. A rapid low-cost high-density DNAbased multi-detection test for routine inspection of meat species. Meat Science, 2014,96(2):922-929.
doi: 10.1016/j.meatsci.2013.09.001
[7] Bertolini F, Ghionda M C, D’alessandro E , et al. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS One, 2015,10(4):e0121701.DOI: 10.1371/journal.pone. 0121701.
doi: 10.1371/journal.pone. 0121701 pmid: 25923709
[8] 李通, 尹艳, 袁其朋 , 等. 运用PCR方法鉴别四种犬科动物的研究. 食品工业科技, 2013,34(17):146-149.
Li T, Yin Y, Yuan Q P , et al. Research and application of PCR method for identification of four Canidae species. Science and Technology Food Industry, 2013,34(17):146-149.
[9] 卞如如, 范阳阳, 刘艳艳 , 等. 一种驴和马及狐狸源性成分快速检测方法的研究. 中国畜牧杂志, 2017,53(1):100-104.
Bian R R, Fan Y Y, Liu Y Y , et al. Research of a method for rapid detection of donkey, horse and fox ingredients. Chinese Journal of Animal Science, 2017,53(1):100-104.
[10] 贾冰凝, 何微, 岳苑 , 等. 实时定量荧光PCR法检测食品中狐狸源性成分. 科技创新导报, 2017,14(36):109-111.
Jia B N, He H, Yue Y , et al. Real-time PCR for detection of fox ingredient in food. Science and Technology Innovation Herald, 2017,14(36):109-111.
[11] Dunbar S A . Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Chimica Acta, 2006,363(1-2):71-82.
doi: 10.1016/j.cccn.2005.06.023 pmid: 16102740
[12] Reslova N, Michna V, Kasny M , et al. xMAP technology: applications in detection of pathogens. Frontiers in Microbiology, 2017,8:55.
doi: 10.3389/fmicb.2017.00055 pmid: 28179899
[13] Wu Y, Yang Y, Liu M , et al. A 15-plex/xMAP methods to detect 15 animal ingredients by suspension array system coupled with multifluorescent magnetic beads. Journal of AOAC International, 2016,99(3):1-10.
doi: 10.5740/jaoacint.15-0264
[14] Ponzoni E, Breviario D, Mautino A , et al. A multiplex, bead-based assay for profiling plant-derived components in complex food matrixes. Analytical and Bioanalytical Chemistry, 2013,405(30):9849-9858.
doi: 10.1007/s00216-013-7434-8 pmid: 24190615
[15] 李生茂, 徐祥, 梁华平 , 等. 锁核酸研究进展. 生理科学进展, 2003,34(4):319-323.
pmid: 14992013
Li S M, Xu X, Liang H P , et al. Progress in locked nucleic acid research. Progress in Physiological Science, 2003,34(4):319-323.
pmid: 14992013
[16] Vester B, Wenge J . LNA (locked nucleic acid): high affinity targeting of complementary RNA and DNA. Biochemistry, 2004,43(42):13233-13241.
doi: 10.1021/bi0485732 pmid: 15491130
[17] Kaur H, Arora A, Wengel J , et al. Thermodynamic, counterion and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry, 2006,45(23):7347-7355.
doi: 10.1021/bi060307w pmid: 16752924
[18] Ballantyne K N, van Oorschot R A H, Mitchell R J . Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics, 2008,91(3):301-305.
doi: 10.1016/j.ygeno.2007.10.016 pmid: 18164179
[19] 秦智锋, 刘建利, 卢体康 , 等. 基于锁核酸探针的双重荧光实时RT-PCR检测方法鉴别新城疫中强毒株与弱毒株. 中国预防兽医学报, 2012,34(9):719-723.
Qin Z F, Liu J L, Lu T K , et al. Development of duplex locked nucleic acid real-time RT-PCR to differentiate the pathovars of Newcastle disease virus. Chinese Journal of Preventive Veterinary Medicine, 2012,34(9):719-723.
[20] 许如苏, 纪玲珍, 黄帅 , 等. 应用多重Taqman -LNA 荧光PCR同时检测肉制品中猪鸡鸭源性成分. 中国兽医杂志, 2017,53(12):81-84.
Xu R S, Ji L Z, Huang S , et al. Development of multiplex Taqman-LNA real-time PCR for detecting pork, chicken and duck-derived ingredients in meat products. Chinese Journal of Veterinary Medicine, 2017,53(12):81-84.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.