Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 102-109    DOI: 10.13523/j.cb.20180714
综述     
微藻生产油脂培养新技术 *
左正三1,孙小曼2,任路静2,**(),黄和3
1 南京北盛荣能源科技有限公司 南京 211178
2 南京工业大学生物与制药工程学院 南京 211816
3 南京工业大学药学院 南京 211816
Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies
Zheng-san ZUO1,Xiao-man SUN2,Lu-jing REN2,**(),He HUANG3
1 Nanjing North Shengrong Energy Technology Co. Ltd, Nanjing 211178,China
2 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
3 School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(545 KB)   HTML
摘要:

近年来,随着全球性能源短缺和环境污染等问题日益严重,利用微藻开发绿色、清洁的生物能源已成为了研究热点。但是微藻油脂的低合成速率和高成本限制了微藻油脂的大规模生产。为了有效开发利用微藻资源,双阶段及共培养技术被发展并取得了显著进展。此外,除了改变培养条件,更为简单的添加生长代谢调节因子的策略也被证明是一种有效的提高微藻油脂的技术。对各种新发展的微藻培养技术及其技术原理进行了详细介绍,在此基础上,初步展望了微藻产油研究的未来发展方向。

关键词: 微藻油脂培养技术氧化损伤植物激素    
Abstract:

Microalgae have received growing interest as a potential biofuel feedstock, which has been regarded as a promising alternative source for next-generation renewable fuels. However, the commercial use of microalgae for sustainable biofuel faces some challenges due to low productivity and high cost. For this reason, two-stage cultivation and co-cultivation strategies were developed to improve the lipid yield. Besides changing the cultivation modes, more simple approach, addition of chemical additives or plant growth regulator are emerging as the potential lipid enhancing strategies. The principle and method of various novel technologies for improving microalgal lipid production were described and discussed.

Key words: Microalgae    Lipid    Cultivation strategy    Oxidative damage    Phytohormone
收稿日期: 2018-03-27 出版日期: 2018-08-13
ZTFLH:  Q54  
基金资助: 江苏省自然科学基金优秀青年基金(BK20160092);国家自然科学基金(21306085)
通讯作者: 任路静     E-mail: renlujing@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
左正三
孙小曼
任路静
黄和

引用本文:

左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.

Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies. China Biotechnology, 2018, 38(7): 102-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180714        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/102

图1  微藻与其他微生物共生机制示意图
[1] 郑洪立, 张齐, 马小琛 , 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009,29(3):110-116.
Zheng H L, Zhang Q, Ma X C , et al. Research progress on biodiesel-producing microalgae cultivation. China Biotechnology, 2009,29(3):110-116.
[2] Chisti Y . Biodiesel from microalgae. Biotechnology Advances. 2007,25(3):294-306.
doi: 10.1016/j.biotechadv.2007.02.001
[3] D’Alessandro E B, Filho N R A . Concepts and studies on lipid and pigments of microalgae: a review. Renewable & Sustainable Energy Reviews, 2016,58:832-841.
doi: 10.1016/j.rser.2015.12.162
[4] Rasool S, Hameed A, Azooz M M , et al. Salt stress: causes, types and responses of plants. New York: Springer New York, 2013.
[5] Li T, Zheng Y, Yu L , et al. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology, 2013,131(2):60-67.
doi: 10.1016/j.biortech.2012.11.121
[6] Sulochana S B, Arumugam M . Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 2016,213:198-203.
doi: 10.1016/j.biortech.2016.02.078
[7] Hu Q A, Sommerfeld M, Jarvis E , et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008,54(4):621-639.
doi: 10.1111/j.1365-313X.2008.03492.x pmid: 18476868
[8] Ra C H, Kang C H, Na K K , et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renewable Energy, 2015,80:117-122.
doi: 10.1016/j.renene.2015.02.002
[9] Chen B, Wan C, Mehmood M A , et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products——a review. Bioresource Technology, 2017,244:1198-1206.
doi: 10.1016/j.biortech.2017.05.170
[10] Ra C H, Kang C H, Jung J H , et al. Effects of light-emitting diodes (leds) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 2016,212:254-261.
doi: 10.1016/j.biortech.2016.04.059
[11] Mitra M, Patidar S K, Mishra S . Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresource Technology, 2015,193:363-369.
doi: 10.1016/j.biortech.2015.06.033
[12] 汪桂林, 桂小华, 邓伟 , 等. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究. 中国生物工程杂志, 2013,33(3):99-104.
Wang G L, Gui X H, Deng W , et al. Two step cultivation mode with “heterotrophy-stress” for Chlorella protothecoides biomass and lipid content. China Biotechnology, 2013,33(3):99-104.
[13] Xiong W, Gao C, Yan D , et al. Double Co(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 2010,101(7):2287-2293.
doi: 10.1016/j.biortech.2009.11.041
[14] Fan J, Huang J, Li Y , et al. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresource Technology, 2012,112(5):206-211.
doi: 10.1016/j.biortech.2012.02.046
[15] Han F, Huang J, Li Y , et al. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Bioresource Technology, 2012,118(4):431-437.
doi: 10.1016/j.biortech.2012.05.066
[16] Li Y, Xu H, Han F , et al. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime. Bioresource Technology, 2014,192(6):781-791.
[17] Cheirsilp B, Suwannarat W, Niyomdecha R . Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology, 2011,28(4):362-368.
doi: 10.1016/j.nbt.2011.01.004
[18] Cheirsilp B, Kitcha S, Torpee S . Co-culture of an oleaginous yeast rhodotorula glutinis and a microalga chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Annals of Microbiology, 2012,62:987-993.
doi: 10.1007/s13213-011-0338-y
[19] Shu C H, Tsai C C, Chen K Y , et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2013,44(6):936-942.
doi: 10.1016/j.jtice.2013.04.001
[20] Ling J, Nip S, Cheok W L , et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresource Technology, 2014,173:132-139.
doi: 10.1016/j.biortech.2014.09.047
[21] Yen H W, Chen P W, Chen L J . The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresource Technology, 2015,184:148-152.
doi: 10.1016/j.biortech.2014.09.113
[22] Peng Z, Yu X, Li J , et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. Fxy-10. Journal of Bioscience & Bioengineering, 2014,118(1):72-77.
[23] 赵飞燕, 余旭亚, 徐军伟 , 等. 共培养微藻Monoraphidium sp. FXY-10与Chlorella sp.U4341提高油脂产率与沉降率. 中国油脂, 2018,43(2):104-109.
Zhao F Y, Yu X Y, Xu W J , et al. Enhancement of lipid productivity and flocculation by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. China Oils and Fats, 2018,43(2):104-109.
[24] De-Bashan L E, Antoun H, Bashan Y . Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris(1). Journal of Phycology, 2008,44(4):938-947.
doi: 10.1111/jpy.2008.44.issue-4
[25] Do N M, Dublan M L , Ortiz-Marquez J C, et al. High lipid productivity of an Ankistrodesmus rhizobium artificial consortium. Bioresource Technology, 2013,146(10):400-407.
doi: 10.1016/j.biortech.2013.07.085 pmid: 23948276
[26] Xin Z, Yan Z, Sheng H , et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresource Technology, 2014,156(2):322-328.
doi: 10.1016/j.biortech.2013.12.112
[27] Higgins B T, Labavitch J M, Vandergheynst J S . Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality. Biotechnology & Bioengineering, 2015,112(9):1801-1809.
[28] Wu Z, Zhu Y, Huang W , et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 2012,110(2):496-502.
doi: 10.1016/j.biortech.2012.01.101
[29] Wang H, Anderson M A, Chen F , et al. Novel bacterial isolate from permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica imet1. Applied & Environmental Microbiology, 2012,78(5):1445.
[30] Agbakpe M, Ge S J, Zhang W , et al. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (pei) coating on bacterial biocoagulation. Bioresource Technology, 2014,166:266-272.
doi: 10.1016/j.biortech.2014.05.060
[31] Wang Y, Yang Y, Ma F , et al. Optimization of Chlorella vulgaris and bioflocculant‐producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Letters in Applied Microbiology, 2015,60(5):497-503.
doi: 10.1111/lam.2015.60.issue-5
[32] Che R, Ding K, Huang L , et al. Enhancing biomass and oil accumulation of Monoraphidium sp. Fxy-10 by combined fulvic acid and two-step cultivation. Journal of the Taiwan Institute of Chemical Engineers, 2016,67:161-165.
doi: 10.1016/j.jtice.2016.06.035
[33] Che R, Huang L, Xu J W , et al. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. Fxy-10. Bioresource Technology, 2016,227:324-334.
[34] 杨凯, 史全良 . 不同浓度IAA对微藻TH6(Oedocladium sp.)生长及脂肪酸含量的影响. 植物资源与环境学报, 2009,18(2):80-83.
doi: 10.3969/j.issn.1674-7895.2009.02.014
Yang K, Shi Q L . Effects of different concentrations of IAA on growth and fatty acid content of microalgae TH6 (Oedocladium sp.). Journal of Plant Resources and Environment, 2009,18(2):80-83.
doi: 10.3969/j.issn.1674-7895.2009.02.014
[35] 郝宗娣, 刘平怀, 时杰 , 等. 不同植物激素对原始小球藻生长及油脂含量的影响. 广东农业科学, 2012,39(8):104-107.
doi: 10.3969/j.issn.1004-874X.2012.08.033
Hao Z D, Liu P H, Shi J , et al. Effects of phytohormone on growth and fatty acid composition of Chlorella protothecoides. Guangdong Agricultural Sciences, 2012,39(8):104-107.
doi: 10.3969/j.issn.1004-874X.2012.08.033
[36] Liu J, Qiu W, Song Y . Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Research, 2016,18:273-280.
doi: 10.1016/j.algal.2016.06.027
[37] 刘飞, 王超, 王振瑶 , 等. 植物激素诱导对小球藻Chlorella vulgaris细胞生物量和油脂合成积累的影响. 中国生物制品学杂志, 2017,30(4):390-394.
Liu F, Wang C, Wang Z Y , et al. Effect of induction with phytohormones analogs on biomass and lipid accumulation in Chlorella vulgaris cells. Chinese Journal of Biologicals, 2017,30(4):390-394.
[38] Yoshida K, Igarashi E, Wakatsuki E , et al. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Science, 2004,167(6):1335-1341.
doi: 10.1016/j.plantsci.2004.07.002
[39] Babu A G, Wu X, Kabra A N , et al. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under n-limitation. Algal Research, 2017,23:178-185.
doi: 10.1016/j.algal.2017.02.004
[40] Salama E, Kabra A N, Ji M K , et al. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 2014,172:97-103.
doi: 10.1016/j.biortech.2014.09.002 pmid: 25247249
[41] Yu X J, Sun J, Sun Y Q , et al. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochemical Engineering Journal, 2016,112:258-268.
doi: 10.1016/j.bej.2016.05.002
[42] Jusoh M, Loh S H, Chuah T S , et al. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 2015,9:14-20.
doi: 10.1016/j.algal.2015.02.020
[43] Dou X, Lu X H, Lu M Z , et al. The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropis oculata. Journal of Renewable Energy, 2013. Doi: 10.1155/2013/671545.
doi: 10.1155/2013/671545
[44] Ren H Y, Liu B F, Kong F , et al. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and edta addition. Bioresource Technology, 2014,169(5):763-767.
doi: 10.1016/j.biortech.2014.06.062 pmid: 25037828
[45] Singh P, Guldhe A, Kumari S , et al. Combined metals and EDTA control: an integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Conversion & Management, 2016,114:100-109.
[46] Gour G S, Prakash C G, Ruma P . Efficacy of EDTA and phosphorous on biomass yield and total lipid accumulation in two green microalgae with special emphasis on neutral lipid detection by flow cytometry. Advances in Biology, 2016,2016(3):1-12.
[47] Gessler N N , Aver’Yanov A A, Belozerskaya T A. Reactive oxygen species in regulation of fungal development. Biochemistry Biokhimiia, 2007,72(10):1091-1109.
doi: 10.1134/S0006297907100070
[48] Menon K R, Balan R, Suraishkumar G K . Stress induced lipid production in chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnology & Bioengineering, 2013,110(6):1627-1636.
[49] Li X, Hu H Y, Zhang Y P . Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 2011,102(3):3098.
doi: 10.1016/j.biortech.2010.10.055
[50] Chokshi K, Pancha I, Trivedi K , et al. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresource Technology, 2015,180:162-171.
doi: 10.1016/j.biortech.2014.12.102
[51] Cho K, Lee C H, Ko K , et al. Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Research, 2016,17:61-66.
doi: 10.1016/j.algal.2016.04.023
[52] Yilancioglu K, Cokol M, Pastirmaci I , et al. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One, 2014,9(3):e91957.
doi: 10.1371/journal.pone.0091957
[53] Petri B G, Watts R J, Teel A L , et al. Fundamentals of isco using hydrogen peroxide. New York: Springer New York, 2011.
[54] Goodson C, Roth R, Wang Z T , et al. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell, 2011,10(12):1592.
doi: 10.1128/EC.05242-11
[55] Zalogin T R, Pick U . Azide improves triglyceride yield in microalgae. Algal Research, 2014,3:8-16.
doi: 10.1016/j.algal.2013.12.002
[56] Zalogin T R, Pick U . Inhibition of nitrate reductase by azide in microalgae results in triglycerides accumulation. Algal Research, 2014,3:17-23.
doi: 10.1016/j.algal.2013.11.018
[57] Sangwoo K, Hanul K, Donghwi K , et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by brefeldin A. PLoS One, 2013,8(12):e81978.
doi: 10.1371/journal.pone.0081978
[58] Kato N, Dong T, Bailey M , et al. Triacylglycerol mobilization is suppressed by brefeldin a in Chlamydomonas reinhardtii. Plant & Cell Physiology, 2013,54(10):1585.
[59] Liu B, Jin L, Sun P , et al. Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii. Journal of Agricultural & Food Chemistry, 2015,63(23):5640-5645.
[60] Ren L J, Sun X M, Ji X J , et al. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresource Technology, 2016,223:141-148.
[61] Gaffney M , O’Rourke R, Murphy R. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation. Algal Research, 2014,6:195-200.
doi: 10.1016/j.algal.2014.03.005
[62] Singh D, Mathur A S, Tuli D K , et al. Propyl gallate and butylated hydroxytoluene influence the accumulation of saturated fatty acids, omega-3 fatty acid and carotenoids in Thraustochytrids. Journal of Functional Foods, 2015,15:186-192.
doi: 10.1016/j.jff.2015.03.022
[1] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[2] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[3] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[4] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[5] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[6] 王彩霞, 张腾江, 滕杰, 冯旭东, 李春. 荒漠微藻的碳氧转换与调控[J]. 中国生物工程杂志, 2016, 36(10): 45-52.
[7] 车绕琼, 黄力, 王琳, 赵鹏, 李涛, 余旭亚. 葡萄糖对单针藻异养、兼养生长及油脂合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 46-51.
[8] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[9] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[10] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[11] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[12] 王美玲, 薛超友, 赵方龙, 卢文玉. 混合油脂补料发酵提高多杀菌素的产量[J]. 中国生物工程杂志, 2013, 33(8): 56-60.
[13] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[14] 汪桂林, 桂小华, 邓伟, 赵志良, 姚杰, 闫云君. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究[J]. 中国生物工程杂志, 2013, 33(3): 99-104.
[15] 黄力, 贺赐安, 赵鹏, 余旭亚. 碳源、氮源对异养单针藻Monoraphidium sp. FXY-10油脂积累和脂肪酸组成的影响[J]. 中国生物工程杂志, 2013, 33(2): 59-64.