Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 92-99    DOI: 10.13523/j.cb.20140513
综述     
微藻生物质制备燃料乙醇关键技术研究进展
李谢昆1,2, 周卫征1, 郭颖1, 吴浩1, 许敬亮1, 袁振宏1
1 中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广州 510640;
2 中国科学院大学 北京 100049
Research Progress on Bioethanol Production with Microalgae as Feedstocks
LI Xie-kun1,2, ZHOU Wei-zheng1, GUO Ying1, WU Hao1, XU Jing-liang1, YUAN Zhen-hong1
1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Key Laboratory of Renewable Energy, CAS, Guangzhou 510640, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(508 KB)   HTML
摘要:

燃料乙醇作为一种优良的可再生液体燃料,其开发利用受到了人们的广泛关注。微藻是一种高光合、高产生物量的生物质资源,很多的藻体细胞中含有大量的淀粉、纤维素(Iα型)等多糖物质,是制备燃料乙醇的优良原料。发展利用微藻制备燃料乙醇技术工艺,对于缓解我国目前日益短缺的能源问题,减少温室气体排放和环境污染等具有很好的应用前景。综述了国内外利用微藻生物质制备燃料乙醇中所用到的关键技术、存在的问题以及今后的发展前景等。

关键词: 微藻燃料乙醇生物质生物燃料    
Abstract:

Fuel ethanol as excellent renewable liquid fuel, has received widespread attention for its exceptional performance. Microalgae is one of the best biomass resources with high photosynthetic efficiency and high biomass yield. Microalgae rich in starch, polysaccharides, cellulose(Iα)and other substances can be used as excellent feedstock for fuel ethanol production with traditional ethanol production technology after simple treatment. Fuel ethanol production with microalgae can alleviate China’s growing energy problems, and reduce greenhouse gas emissions and environmental pollution. The recent research progress on microalgae ethanol reviewed and proposed its developmental potential.

Key words: Microalgae    Fuel ethanol    Biomass    Biofuel
收稿日期: 2014-03-26 出版日期: 2014-05-25
ZTFLH:  Q815  
基金资助:

国家“863”计划(2013AA065803),国家自然科学基金(2117623,21211140237),中科院院地合作项目,广州市科技攻关项目(2013J4300026),中国科学院广州能源研究所所长创新基金重点培育项目(y407p11001)资助项目

通讯作者: 许敬亮     E-mail: xjl@ms.giec.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.

LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks. China Biotechnology, 2014, 34(5): 92-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140513        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/92


[1] Waltz E. Biotech's green gold?. Nat Biotechnol, 2009, 27(1): 15-18.

[2] Borines M G, De Leon R L, Mchenry M P. Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4432-4435.

[3] John R P, Anisha G S, Nampoothiri K M, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol, 2011, 102(1): 186-193.

[4] Smith V H, Sturm B S M, Denoyelles F J, et al. The ecology of algal biodiesel production. Trends in Ecology & Evolution, 2010, 25(5): 301-309.

[5] Costa J A, De Morais M G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol, 2011, 102(1): 2-9.

[6] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol, 2008, 26(3): 126-131.

[7] Chen W, Zhang C, Song L, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009, 77(1): 41-47.

[8] Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102: 1371-1381.

[9] Mussatto S I, Dragone G, Guimaraes PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv, 2010, 28(6): 817-830.

[10] Choi S P, Nguyen M T, Sim S J. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol, 2010, 101(14): 5330-5336.

[11] Hirayama S, Ueda R, Ogushi Y, et al. Ethanol production from carbon dioxide by fermentative microalgae. Studies in Surface Science and Catalysis: Elsevier, 1998: 657-660.

[12] Doucha J, Lívansky K. Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of Applied Phycology, 2009, 21(1): 111-117.

[13] Harun R, Danquah M K. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 2011, 168(3): 1079-1084.

[14] Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304-309.

[15] Miranda J R, Passarinho PC, Gouveia L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol, 2012, 104: 342-348.

[16] Ho S H, Huang S W, Chen C Y, et al. Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 2013, 135: 191-198.

[17] Zhou N, Zhang Y, Wu X, et al. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol, 2011, 102(21): 10158-10161.

[18] Kim J K, Um B H, Kim T H. Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean Journal of Chemical Engineering, 2012, 29(2): 209-214.

[19] 黄伟. 氮胁迫下Chlorella zofingiensis碳水化合物与脂肪酸合成规律研究. 北京: 中国科学院大学, 2013. Huang W. Synthesis Patterns of Carbohydrate and Fatty Acid under Nitrogen Stress of Microalgae Chlorella Zofingiensis. Beijing: University of Chinese Academy of Sciences, 2013.

[20] Shekharam K M, Venkataraman L V, Salimath PV. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry, 1987, 26(8): 2267-2269.

[21] Kumar K, Dasgupta C N, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 2011, 102(8): 4945-4953.

[22] Bonente G, Formighieri C, Mantelli M, et al. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res, 2011, 108(2-3): 107-120.

[23] Aruna M. Mutagenic studies in a filamentous alga, employing a chemical mutagen-ethylmethane sulphonate. Journal of Phytology, 2012, 4(2): 01-05.

[24] Vuttipongchaikij S. Genetic manipulation of microalgae for improvement of biodiesel production. Thai J. Genet, 2012, 5(2): 130-148.

[25] 邢翔,张小葵,杜宗军,等. 两种生物反应器高密度培养小球藻研究. 科技导报, 2008, 26(23): 56-58. Xing X, Zhang X K, Du Z J, et al. Novel Cultivation Method for Chlorella. Science & Technology Review, 2008, 26(23): 56-58.

[26] Dibenedetto A. The potential of aquatic biomass for CO2-enhanced fixation and energy production. Greenhouse Gases-Science and Technology, 2011, 1(1): 58-71.

[27] Ono E, Cuello J L. Carbon Dioxide Mitigation using Thermophilic Cyanobacteria. Biosystems Engineering, 2007, 96(1): 129-134.

[28] Galloway R A, Gauch H G, Soeder C J. Effects of Inhibitory Levels of CO2 on Chlorella. Plant Physiology, 1964, 39: R8-&.

[29] Šetlík I, Ballin G, Doucha J, et al. Macromolecular syntheses and the course of cell cycle events in the chlorococcal algascenedesmus quadricauda under nutrient starvation: Effect of sulphur starvation. Biologia Plantarum, 1988, 30(3): 161-169.

[30] Da Silva A F, Lourenço S O, Chaloub R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquatic Botany, 2009, 91(4): 291-297.

[31] Arad S. Predation by a dinoflagellate on a red microalga with a cell wall modified by sulfate and nitrate starvation. Mar. Ecol. Prog. Ser, 1993, 104: 293-298.

[32] Dragone G, Fernandes B D, Abreu A P, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 2011, 88(10): 3331-3335.

[33] Ho S H, Chen C Y, Chang J S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 2012, 113: 244-252.

[34] Arad S, Lerental Y, Dubinsky O. Effect of nitrate and sulfate starvation on polysaccharide formation in rhodella reticulata. Bioresource Technology, 1992, 42(2): 141-148.

[35] Allen A E, Laroche J, Maheswari U, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences, 2008, 105(30): 10438-10443.

[36] 尹逊栋,葛蔚,柴超,等. 营养条件对四种海洋微藻生化组分的影响. 水产科学, 2012, 31(11): 640-644. Yin X D, Ge W, Chai CH, et al. Effects of Nutrient Conditions on Biochemical Compositions in Four Species of Marine Alage. Fisheries Science, 2012, 31(11): 640-644.

[37] Hardie L P, Balkwill D L, Stevens S E. Effects of Iron Starvation on the Physiology of the Cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol, 1983, 45(3): 999-1006.

[38] Douskova I, Doucha J, Livansky K, et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Applied Microbiology and Biotechnology, 2009, 82(1): 179-185.

[39] De-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 2010, 101(6): 1611-1627.

[40] 胡庆明. 石家庄炼厂废气养殖微藻获得成功. 石油石化节能, 2013, 9: 37. Hu Q M. Microalgae Cultivation with Refinery gas Get Success in Shijiazhuang. Foreign Oilfield Engineering, 2013, 9: 37.

[41] 徐少琨,张峰,向文洲,等. 微藻应用于煤炭烟气减排的研究进展. 地球科学进展, 2011, 26(9): 944-953. Xu S K, Zhang F, Xiang W Z, et al. Progress in the Study of Removal from Coal Fired Flue Gas by Microalgaae. Advances in Earth Science, 2011, 26(9): 944-953.

[42] Chinnasamy S, Bhatnagar A, Hunt R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 2010, 101(9): 3097-3105.

[43] 沈丹丹. 富油及富淀粉微藻培养与奶牛场废水处理相结合的效果研究. 广州: 暨南大学, 2013. Sheng D D. Integrated the Biomass Production of Oleaginous and Starch-rich Microalgae and Dairy Wastewater Treatment. Guangzhou: Jinan University, 2013.

[44] Chen Paul, Min M, Chen Y F,et al. Review of the biological and engineering aspects of algae to fuels approach, 2009.

[45] Ugwu C U, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol, 2008, 99(10): 4021-4028.

[46] Singh R N, Sharma S. Development of suitable photobioreactor for algae production - A review. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2347-2353.

[47] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.

[48] 孙丽英,何皓,田宜水,等. 微藻规模化生产的关键问题. 可再生能源, 2012, 30(9): 70-79. Sun L Y, He G, Tian Y SH, et al. Key issues discussion of large-scale production of microalgae. Renewable Energy Resources, 2012, 30(9): 70-79.

[49] Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3): 294-306.

[50] Fernandes B D, Dragone G M, Teixeira J A, et al. Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol, 2010, 161(1-8): 218-226.

[51] Eriksen N T, Riisgard F K, Gunther W S, et al. On-line estimation of O(2) production, CO(2) uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol, 2007, 19(2): 161-174.

[52] Brányiková I, Marálková B, Doucha J, et al. Microalgae—novel highly efficient starch producers. Biotechnology and Bioengineering, 2011, 108(4): 766-776.

[53] 庞通,刘建国,林伟,等. 藻类生物燃料乙醇制备的研究进展. 渔业现代化, 2012, 39(5): 63-71. Pang T, Liu J G, Lin W, et al. Advances on the algae to bioethanol technologies. Fishery Modernization, 2012, 39(5): 63-71.

[54] Chen P, Min M, Chen Y, et al. Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2010, 2(4): 1-30.

[55] Chen C Y, Yeh K L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 2011, 102(1): 71-81.

[56] Heasman M, Diemar J, O'connor W, et al. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. Aquaculture Research, 2000, 31(8-9): 637-659.

[57] Molina G E, Belarbi E H, Acien F F G, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv, 2003, 20(7-8): 491-515.

[58] Lee S J, Kim S H, Kim J E, et al. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Letters in Applied Microbiology, 1998, 27(1): 14-18.

[59] Harun R, Singh M, Forde G M, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1037-1047.

[60] Cheng Y L, Juan Y C, Liao G Y, et al. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 2011, 102(1): 82-87.

[61] 张海阳,匡亚丽,林喆. 能源微藻采收技术研究进展. 化工进展, 2013, 32(9): 2092-2098. Zhang H Y, Kuang L Y, Lin Z. Research progress of harvesting technologies of energymicroalgae. Chemical Industry and Engineering Progress, 2013,32(9): 2092-2098.

[62] 薛蓉,陆向红,卢美贞,等. 絮凝法采收小球藻的研究. 可再生能源, 2012, 30(9): 80-84. Xue R, Lu X H, Lu M Z, et al. The study on recovery of Chlorella by flocculation method. Renewable Energy Resources, 2012, 30(9): 80-84.

[63] Lee S, Oh Y, Kim D, et al. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol, 2011, 164(6): 878-888.

[64] Nguyen M T, Choi S P, Lee J, et al. Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production. Journal of Microbiology and Biotechnology, 2009, 19(2): 161-166.

[65] Harun R, Jason W S Y, Cherrington T, et al. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464-3467.

[66] Yu Y, Lou X, Wu H W. Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energy & Fuels, 2008, 22(1): 46-60.

[67] 余强,庄新姝,袁振宏,等. 木质纤维素类生物质高温液态水预处理技术. 化工进展, 2010, 29(11): 2177-2182. Yu Q, Zhuang X SH, Yuan Z H, et al. Pretreatment of lignocellulosic biomass with liquid hot water. Chemical Industry and Engineering Progress, 2010, 29(11): 2177-2182.

[68] Okuda K, Oka K, Onda A, et al. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 836-841.

[69] Fu C C, Hung T C, Chen J Y, et al. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol, 2010, 101(22): 8750-8754.

[70] Rodrigues M A, Da Silva Bon E P. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res, 2011, 2011: 405603.

[71] Zhou N, Zhang Y, Gong X, et al. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresour Technol, 2012, 118: 512-517.

[72] Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26(1): 89-105.

[73] Enquist-Newman M, Faust A M, Bravo D D, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2014, 505(7482): 239-243.

[74] Kim N J, Li H, Jung K, et al. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol, 2011, 102(16): 7466-7469.

[75] Lee S, Oh Y, Kim D, et al. Converting Carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology, 2011, 164(6): 878-888.

[76] Hirano A, Ueda R, Hirayama S, et al. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 1997, 22(2-3): 137-142.

[77] Ueda R, Hirayama S, Sugata K, et al. Process for the production of ethanol from microalgae. US Patent 5,578,472, 1996.

[78] Doan Q C, Moheimani N R, Mastrangelo A J, et al. Microalgal biomass for bioethanol fermentation: Implications for hypersaline systems with an industrial focus. Biomass and Bioenergy, 2012, 46: 79-88.

[1] 蒋甜,张超,刘会洲. 微生物燃料电池发展态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 189-197.
[2] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[3] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[4] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[5] 王彩霞, 张腾江, 滕杰, 冯旭东, 李春. 荒漠微藻的碳氧转换与调控[J]. 中国生物工程杂志, 2016, 36(10): 45-52.
[6] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[7] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2): 118-128.
[8] 李永富, 孟范平, 李祥蕾, 马冬冬. 光照对光生物反应器中微藻高密度光自养培养的影响[J]. 中国生物工程杂志, 2013, 33(2): 103-110.
[9] 刘华擎, 李灏. 生物质能源发酵中染菌及防控的研究进展[J]. 中国生物工程杂志, 2013, 33(12): 114-120.
[10] 胡文军, 罗玮, 李汉广, 顾秋亚, 余晓斌. 产油微藻筛选和鉴定及其产油性能的研究[J]. 中国生物工程杂志, 2012, 32(12): 66-72.
[11] 杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允. 响应面法优化普通小球藻混合营养培养基组成生产生物质[J]. 中国生物工程杂志, 2012, 32(09): 70-75.
[12] 李小冬, 杨娜, 万永虎, 吴嘉, 贾东晨, 乔敏. 表面展示工程在酒精发酵方面的应用[J]. 中国生物工程杂志, 2012, 32(08): 107-110.
[13] 吕艳霞, 陈兆安, 陆洪斌, 邓麦村, 薛松, 张卫. 细胞固定化方法制备微藻光电极的研究[J]. 中国生物工程杂志, 2012, 32(04): 96-102.
[14] 刘斌, 陈方, 陈云伟, 丁陈君, 邓勇. 面向先进生物燃料的合成生物学[J]. 中国生物工程杂志, 2012, 32(01): 115-123.
[15] 陈丽红, 孙利芹, 王长海. 微藻抗菌物质及筛选模型[J]. 中国生物工程杂志, 2011, 31(9): 109-116.