Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 16-22    DOI: 10.13523/j.cb.20161103
研究报告     
不同营养元素限制对圆红冬胞酵母油脂生产的影响
王雅南1,2, 沈宏伟1, 杨晓兵1, 赵宗保1
1 中国科学院大连化学物理研究所生物技术部 大连 116023;
2 中国科学院大学 北京 100049
Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements
WANG Ya nan1,2, SHEN Hong wei1, YANG Xiao bing1, ZHAO Zong bao1
1. Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Dalian 116023, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1076 KB)   HTML
摘要:

以产油酵母圆红冬胞酵母(Rhodosporidium toruloides)作为研究对象,系统地研究了氮、磷、硫限制对其油脂积累的影响,并在3L生物反应器上考察了R.toruloides在C/P摩尔比为1 133.3时初始葡萄糖浓度对油脂生产的影响。结果表明:氮、磷、硫中任意一种营养元素受限,均能促使R.toruloides在胞内积累高于自身干重60%的油脂;通过改变培养基的组成,可以调节油脂中脂肪酸的构成,使油脂中饱和脂肪酸比例高于70%或不饱和脂肪酸比例高于60%。就油脂生产强度及转化效率而言,磷限制优于氮限制或硫限制。当C/P摩尔比相同时,初始葡萄糖浓度越低越有利于油脂生产。对采用不同原料生产微生物油脂的技术有一定指导意义。

关键词: 微生物油脂营养限制油脂酵母圆红冬胞酵母    
Abstract:

To compare lipid production among different nutrient-limited conditions, the oleaginous yeast Rhodosporidium toruloides was cultivated on glucose with limitation of nitrogen-or phosphorus-or sulfur-sources on the flasks. Then, the lipid accumulation on 3-liter bioreactors by varying carbon concentrations at the C/P of 1 133.3 were surveyed. Our results demonstrated that lipid content of over 60% could be achieved by limiting either one of these three elements. By controlling the recipe of culture media, it was possible to prepare lipids of which contents of saturated fatty acids were over 70% or contents of unsaturated fatty acids were over 60%. P-limitation was more effective comparing to N-limitation or S-limitation for higher lipid yield and productivity. The information is valuable for microbial lipid technology using different biological resources as feedstock.

Key words: Oleaginous yeast    Nutrient limitation    Rhodosporidium toruloides    Microbial lipids
收稿日期: 2016-05-23 出版日期: 2016-11-25
ZTFLH:  Q93-33  
基金资助:

国家自然科学基金资助项目(21325627)

通讯作者: 杨晓兵,yxb@dicp.ac.cn     E-mail: yxb@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.

WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements. China Biotechnology, 2016, 36(11): 16-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161103        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/16

[1] Azapagic A. Sustainability considerations for integrated biorefineries. Trends Biotechnol, 2014, 32(1):1-4.
[2] Meng X, Yang J M, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34(1):1-5.
[3] Subramaniam R, Dufreche S, Zappi M, et al. Microbial lipids from renewable resources:production and characterization. Journal of Industrial Microbiology & Biotechnology, 2010, 37(12):1271-1287.
[4] Wu S, Hu C, Jin G, et al. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol, 2010, 101(15):6124-6129.
[5] Wu S, Zhao X, Shen H, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol, 2011, 102(2):1803-1807.
[6] Braunwald T, Schwemmlein L, Graeff-Honninger S, et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol, 2013, 97(14):6581-6588.
[7] Hassan M, Blanc P J, Granger M L, et al. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem, 1996, 31(4):355-361.
[8] Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I:Biochemistry of single cell oil production. Eur J Lipid Sci Technol, 2011, 113(8):1031-1051.
[9] Li Y H, Zhao Z B, Bai F W. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, 41(3):312-317.
[10] Hu C, Zhao X, Zhao J, et al. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol, 2009, 100(20):4843-4847.
[11] Zhao X, Wu S, Hu C, et al. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol, 2010, 37(6):581-585.
[12] Huang Q, Wang Q, Gong Z, et al. Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol, 2013, 130:339-344.
[13] Zhu Z, Zhang S, Liu H, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun, 2012, 3:1112.
[14] Lin X, Wang Y, Zhang S, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res, 2014, 14(4):547-555.
[15] Koh C M, Liu Y, Moehninsi, et al. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiol, 2014, 14:50.
[16] Levering J, Broddrick J, Zengler K. Engineering of oleaginous organisms for lipid production. Curr Opin Biotechnol, 2015, 36:32-39.
[17] Zhu Z, Ding Y, Gong Z, et al. Dynamics of the lipid droplet proteome of the Oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell, 2015, 14(3):252-264.
[18] Kempter A, Loges N, Hillesheim N, et al. Phosphate removal from waste water by a seeding approach using novel seeding material. Desalination and Water Treatment, 2015, 55(10):2638-2646.
[19] Liu B, Zhao Z. Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technology and Biotechnology, 2007, 82(8):775-780.
[20] Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 2005, 86(10):1059-1070.
[21] Gregersen S B, Povey M J W, Kidmose U, et al. Identification of important mechanical and acoustic parameters for the sensory quality of cocoa butter alternatives. Food Research International, 2015, 76:637-644.

[1] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[2] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[3] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[4] 吴思国,赵鑫,胡翠敏,张素芳,华艳艳,赵宗保. 转化N-乙酰-D-葡糖胺产油真菌的筛选[J]. 中国生物工程杂志, 2008, 28(11): 58-62.
[5] 华艳艳,赵鑫,赵金,张素芳,赵宗保. 圆红冬孢酵母发酵菊芋块茎产油脂的研究[J]. 中国生物工程杂志, 2007, 27(10): 59-63.
[6] 李永红, 刘波, 孙艳, 赵宗保, 白凤武. 广谱碳源产油酵母菌的筛选[J]. 中国生物工程杂志, 2005, 25(12): 39-44.
[7] 赵宗保. 加快微生物油脂研究为生物柴油产业提供廉价原料[J]. 中国生物工程杂志, 2005, 25(02): 8-11.