Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 133-143    DOI: 10.13523/j.cb.20170720
综述     
微藻生物质成分检测方法评述
孟迎迎1,2, 姚长洪1, 刘娇1,3, 申培丽1,3, 薛松1, 杨青2
1. 中国科学院大连化学物理研究所海洋生物工程组大连 116023;
2. 大连理工大学生命科学与技术学院大连 116024;
3. 中国科学院大学北京 100084
Review and Evaluation of Microalgal Components Determination Methods
MENG Ying-ying1,2, YAO Chang-hong1, LIU Jiao1,3, SHEN Pei-li1,3, XUE Song1, YANG Qing2
1. Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
3. University of Chinese Academy of Sciences, Beijing 100084, China
 全文: PDF(1067 KB)   HTML
摘要: 不断发展的微藻产业需要统一可信的生物质检测方法体系来评估微藻研究、培养及生产中的各种生物质指标。对目前常用的微藻生物质组成的检测方法进行综述及评估,以期推动微藻产业的生物质分析平台标准化。
关键词: 脂质色素蛋白质碳水化合物微藻生物质检测方法    
Abstract: Microalgae have been attracted as one of the potential sustainable bioresoucre due to their high photosynthetic efficiency, shorter growth cycle and enrichment of lipids, protein, carbohydrate, carotenoid and so on. Microalgae have high oil yield per unit area compared with other oilseed crops. In recent years, microalgae have been extensively investigated for biodiesel technology and CO2 emission reduction simultaneously. In addition, microalgae rich in a variety of high-value bioactive substances and have been widely applied in food, medicine and feed fields. The microalgal industry and corresponding research call the standard methods to evaluate the cultivated biomass from aspects. It have been reviewed that the methods to examine the most interested components in quantification and quality prevail in order to promote the standardization for analysis of microalgal components in microalgal field.
Key words: Carbohydrates    Protein    Pigments    Measurement methodology    Lipids
收稿日期: 2017-01-29 出版日期: 2017-07-25
ZTFLH:  Q815  
基金资助: 国家"863"计划(2014AA022004)、国家自然科学基金(41406177,21576253,31470432)资助项目
通讯作者: 薛松     E-mail: xuesong@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘娇
薛松
杨青
姚长洪
申培丽
孟迎迎

引用本文:

孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.

MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods. China Biotechnology, 2017, 37(7): 133-143.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170720        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/133

[1] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008, 54(4): 621-639.
[2] Chen C Y, Zhao X Q, Yen H W, et al. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 2013, 78: 1-10.
[3] Zhang W, Wang J, Wang J, Liu T. Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresource Technology, 2014, 158: 329-335.
[4] Del Campo J A, Garcia-Gonzalez M, Guerrero M G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 2007, 74(6): 1163-1174.
[5] Meng Y Y, Jiang J P, Wang H T, et al. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresource Technology, 2015, 179: 483-489.
[6] Yao C H, Ai J N, Cao X P, et al. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresource Technology, 2012, 118: 438-444.
[7] Yao C H, Pan Y F, Lu H B, et al. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis. Bioresource Technology, 2016, 212: 26-34.
[8] Spolaore P, Joannis-Cassan C, Duran E,et al. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101(2): 87-96.
[9] Lorenz R T, Cysewski G R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000, 18(4): 160-167.
[10] Singh S, Kate B N, Banerjee U C. Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology, 2005, 25(3): 73-95.
[11] Ward O P, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 2005, 40(12): 3627-3652.
[12] Kay R A. Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 1991, 30(6): 555-573.
[13] Becker E W. Micro-algae as a source of protein. Biotechnology Advances, 2007, 25(2): 207-210.
[14] Folch J, Lees M and Stanley G H S. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 1957, 226(1): 497-509.
[15] Bligh E G and Dyer W J. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.
[16] Fuchs B, Süβ R, Teuber K, et al. Lipid analysis by thin-layer chromatography-A review of the current state. Journal of Chromatography A, 2011, 1218(19): 2754-2774.
[17] Liu J, Liu Y, Wang H, et al. Direct transesterification of fresh microalgal cells. Bioresource Technology, 2015, 176: 284-287.
[18] Wang H, Yao C, Liu Y, et al. Identification of fatty acid biomarkers for quantification of neutral lipids in marine microalgae Isochrysis zhangjiangensis. Journal of Applied Phycology, 2015, 27(1): 249-255.
[19] Chen W, Zhang C, Song L, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009, 77(1): 41-47.
[20] 王海涛, 刘亚男, 曹旭鹏, 等. 尼罗红荧光法快速检测培养过程中湛江等鞭金藻的中性脂. 生物加工过程, 2014, 12(6): 78-83. Wang H T, Liu Y N, Cao X P, et al. Nile red fluorescence method for rapid measurement of neutral lipids during the cultivation of the marine microalgae Isochrysis zhangjiangensis. Chinese Journal of Bioprocess Engineering, 2014, 12(6): 78-83.
[21] Wu S, Zhang B, Huang A, et al. Detection of intracellular neutral lipid content in the marine microalgae Prorocentrum micans and Phaeodactylum tricornutum using Nile red and BODIPY 505/515. Journal of Applied Phycology, 2014, 26(4): 1659-1668.
[22] Rumin J, Bonnefound H, Saint-Jean B, et al. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 2015, 8: 42.
[23] 孟迎迎, 王海涛, 薛松, 等. 高效薄层色谱测定湛江等鞭金藻培养过程脂质变化. 微生物学通报, 2014, 41(1): 178-183. Meng Y Y, Wang H T, Xue S, et al. Lipids analysis of Isochrysis zhangjiangensis during cultivation process by HPTLC. Microbiology China, 2014, 41(1): 178-183.
[24] Shen P, Wang H, Pan Y, et al. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae. Frontiers in Plant Science, 2016, 7: 162.
[25] Liu J, Chu Y, Cao X, et al. Rapid transesterification of micro-amount of lipids from microalgae via a micro-mixer reactor. Biotechnology for Biofuels, 2015, 8: 229.
[26] Lin J T. HPLC separation of acyl lipid classes. Journal of Liquid Chromatography & Related Technologies, 2007, 30: 2005-2020.
[27] Zhu Z, Dane A, Spijksma G, et al, An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column. Journal of Chromatography A, 2012, 1220: 26-34.
[28] Anesi A, Guella G. A fast liquid chromatography-mass Spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2015, 1384: 44-52.
[29] Kobayashi N, Noel A E, Barnes A, et al. Rapid detection and quantification of triacylglycerol by HPLC-ELSD in Chlamydomonas reinhardtii and Chlorella Strains. Lipids, 2013, 48(10): 1035-1049.
[30] Lísa M, Cífková E, Hol apek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 2011, 1218(31): 5146-5156.
[31] Li M, Baughman E, Roth M R, et al. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. The Plant Journal, 2014, 77(1): 160-172.
[32] Vu S H, Shiva S, Roth M R, et al. Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant Journal, 2014, 80(4): 728-743.
[33] Danielewicz M A, Anderson L A and Franz A K. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 401(8): 2609-2616.
[34] Ritchie R J, Consistent sets of spectrophotometric chlorophyll equations for acetone, Methanol and Ethanol Solvents. Photosynthesis Research, 2006, 89(1): 27-41.
[35] Ritchie R J, Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 2008, 46(1): 115-126.
[36] Ördög V, Stirk W A, Bálint P, et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 2012, 24(4): 907-914.
[37] Rodríguez-Bernaldo de Quirós A, Costa H S. Analysis of carotenoids in vegetable and plasma samples: A review. Journal of Food Composition and Analysis, 2006, 19(2-3): 97-111.
[38] Van Heukelem L, Thomas C S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 2001, 910(1): 31-49.
[39] Guaratini T, Cardozo K H M, Pintoc E, et al. Comparison of diode array and electrochemical detection in the C-30 reverse phase HPLC analysis of algae carotenoids. Journal of the Brazilian Chemical Society, 2009, 20(9): 1609-1616.
[40] Boussiba S and Vonshak A. Astaxanthin accumulation in the green-alga Haematococcus pluvialis. Plant and Cell Physiology, 1991, 32(7): 1077-1082.
[41] Holtin K, Kuehnle M, Rehbein J, et al. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 395(6): 1613-1622.
[42] Chen G, Wang B, Han D, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). The Plant Journal, 2015, 81(1): 95-107.
[43] Dubois M, Gilles K A, Hamilton J K, et al.Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-356.
[44] Yemm E, Willis A. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 1954, 57(3): 508.
[45] Laurens L M, Dempster T A, Jones H D, et al. Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Analytical Chemistry, 2012, 84(4): 1879-1887.
[46] Blakeney A B, Harris P J, Henry R J, et al. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 1983, 113(2): 291-299.
[47] Templeton D W, Quinn M, Van Wychen S, et al. Separation and quantification of microalgal carbohydrates. Journal of Chromatography A, 2012, 1270: 225-234.
[48] Honda S, Akao E, Suzuki S,et al. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Analytical Biochemistry, 1989, 180(2): 351-357.
[49] Dvo á ková E, Šnóblová M and Hrdli ka P. Carbohydrate analysis: From sample preparation to HPLC on different stationary phases coupled with evaporative light - scattering detection. Journal of Separation Science, 2014, 37(4): 323-337.
[50] Busi M V, Barchiesi J, Mart N M, et al. Starch metabolism in green algae. Starch-Stärke, 2014, 66(1-2): 28-40.
[51] Ball S G. The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii. Australian Journal of Chemistry, 2002, 55(2): 49-59.
[52] Rose R, Rose C L, Omi S K, et al. Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry, 1991, 39(1): 2-11.
[53] Brányiková I, MaršLkov B, Doucha J et al. Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 2011, 108(4): 766-776.
[54] Smith A M, Zeeman S C. Quantification of starch in plant tissues. Nature Protocols, 2006, 1(3): 1342-1345.
[55] Rausch T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 1981, 78(3): 237-251.
[56] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, 193(1): 265-275.
[57] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1-2): 248-254.
[58] Brown R E, Jarvis K L, Hyland K J. Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry, 1989, 180(1): 36-139.
[59] López C V G, Garc A M D C C, Fern Ndez F G A, et al. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 2010, 101(19): 7587-7591.
[60] Lourenço S O, Barbarino E, Lav N P L, et al. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 2004, 39(1): 17-32.
[61] Meng Y, Yao C, Xue S, et al. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 2014, 151: 347-354.
[62] Wang T T, Ji Y T, Wang Y, et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnology for Biofuels, 2014, 7: 58.
[63] Ji Y T, He Y H, Cui Y B, et al. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnology Journal, 2014, 9(12): 1512-1518.
[64] Chiu L D, Ho S H, Shimada R, et al. Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift. Biotechnology for Biofuels, 2017, 10(1): 9.
[65] Kaczor A, Turnau K and Baranska M. In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst, 2011, 136(6): 1109-1112.
[66] Liu J, Pan Y, Yao C, et al. Determination of ash content and concomitant acquisition of cell compositions in microalgae via thermogravimetric (TG) analysis. Algal Research, 2015, 12: 149-155.
[1] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[2] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[3] 唐跃威,刘治平. 基于深度学习与多层次信息融合的药物靶标亲和力预测*[J]. 中国生物工程杂志, 2021, 41(11): 40-47.
[4] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[5] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[6] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[7] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[8] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[9] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[10] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[11] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[12] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[13] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[14] 汪企再,王鸿超,陈海琴,赵建新,张灏,陈卫,陈永泉. 过表达亚甲基四氢叶酸脱氢酶对高山被孢霉脂质合成的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 12-18.
[15] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.