Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (11): 91-99    DOI: 10.13523/j.cb.20141113
技术与方法     
利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律
雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武
暨南大学生态学系 水生生物研究中心 广州 510632
The Growth and Lipids Accumulation Pattern of Oleaginous Green Microalga Scenedesmus acuminatus Large Volume Cultured in Flat Panel Photobioreactor
LEI Xue-qing, LU Zhe, GAO Bao-yan, ZHANG Wen-yuan, LI Ai-fen, ZHANG Cheng-wu
Research Center of Hydrobiology, Depart of Ecology, Jinan University, Guangzhou 510632, China
 全文: PDF(1022 KB)   HTML
摘要:

以新近分离的淡水绿藻——尖状栅藻(Scenedesmus acuminatus)为研究对象,将改良的BG-11培养基中的初始NaNO3浓度降低为6.0mmol/L和3.6mmol/L,利用新设计的内置拉筋平板式光生物反应器对尖状栅藻(S. acuminatus)进行大量培养。测定不同时相的生物量、总脂含量、脂组分含量及脂肪酸组成和含量,分析尖状栅藻(S. acuminatus)大量培养时的生长和油脂积累规律。当初始NaNO3浓度为6mmol/L时其最高生物量(6.27g/L)明显高于初始NaNO3浓度为3.6mmol/L时的生物量(5.30g/L);而最高的总脂含量在初始NaNO3浓度为3.6mmol/L时获得为干重的56.6%,高于初始NaNO3浓度为6mmol/L时的总脂含量(51.6%)。总脂经硅胶柱层析分级后得到三种类型的脂组分:中性脂、糖脂和磷脂,随着培养时间的延长中性脂含量逐渐增加,培养至18d后,中性脂的含量分别达到总脂的 90.9%(6 mmol/L NaNO3)和 92.0%(3.6 mmol/L NaNO3)及干重的 47.5%(6.0 mmol/L NaNO3)和 51.4%(3.6 mmol/L NaNO3)。主要脂肪酸组成为棕榈酸、棕榈油酸、硬脂酸、油酸、亚麻油酸和亚麻酸,这六种脂肪酸在不同时相的含量变化范围分别为89.92%~96.18%(占总脂肪酸)和12.5%~50.7%(占细胞干重)。总脂、中性脂及总脂肪酸单位体积产率分别为:0.18 g/L/d,0.16 g/L/d和0.15 g/L/d(6.0 mmol/L NaNO3)及0.16 g/L/d,0.15 g/L/d和0.15 g/L/d(3.6 mmol/L NaNO3)。研究结果表明,尖状栅藻(S. acuminatus)是一株易于规模化培养、脂肪酸组成适合于生物柴油生产的高产油微藻。

关键词: 尖状栅藻平板式光生物反应器油脂脂肪酸生物柴油    
Abstract:

Scenedesmus acuminatus was a new isolated freshwater green microalga cultured in modified BG-11 medium. In order to improve the rapid accumulation of the lipids, the initial NaNO3 concentration reduced to one third and one fifth of the original NaNO3 concentration in the BG-11 medium, 6.0mmol/L and 3.6mmol/L, respectively. It was large volume cultured in a new-designed internally installed tiepiece flat panel photobioreactor. To analyze the growth and oil accumulation pattern of S.acuminatus mass cultures, the biomass, total lipids content, lipid compositions, and fatty acids profiles in different phase were investigate. When the initial NaNO3 concentration was 6.0mmol/L, the biomass(6.27g/L)was higher than the biomass(5.30g/L) of 3.6mmol/L treatment. While, the highest lipids content of 56.6% of dry weight was occurred at 3.6mmol/L treatment. The total lipids content was fractionated by solid phase extraction (SPE) into three broad classes: neutral lipid (NL), glycolipid (GL) and phospholipid (PL). The content of neutral lipid increased along with the culture time, and it reached to 90.9% and 92.0% of the total lipids, 47.5% and 51.4% of dry weight when the initial NaNO3 concentration was 6.0mmol/L and 3.6 mmol/L, respectively. The major fatty acids of S.acuminatus were C16:0, C16:1, C18:0, C18:1, C18:2,and C18:3,which together accounted for 89.9%~96.2% of the total fatty acids content and 12.5%~50.7% of dry weight. The volumetric productivity of total lipids, neutral lipids and total fatty acids of S.acuminatus were 0.18g/L·d, 0.16 g/L·d and 0.15 g/L·d when the initial NaNO3 concentration was 6.0mmol/L and 0.16g/L·d, 0.15g/L·d and 0.15g/L·d when the initial NaNO3 concentration was 3.6 mmol/L, respectively. The results showed that S.acuminatus was a hyper-oil producing strain that is easy to large-scale cultivation and its profiles of fatty acids is suitable for biodiesel production.

Key words: Scenedesmus acuminatus    Flat panel photobioreactor    Lipids    Fatty acid    Biodiesel
收稿日期: 2014-09-05 出版日期: 2014-11-25
ZTFLH:  TK6  
基金资助:

国家"863"计划(2013AA065805),国家自然科学基金(31170337),广东省低碳专项(2011-051)资助项目

通讯作者: 张成武,tzhangcw@jnu.edu.cn     E-mail: tzhangcw@jnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.

LEI Xue-qing, LU Zhe, GAO Bao-yan, ZHANG Wen-yuan, LI Ai-fen, ZHANG Cheng-wu. The Growth and Lipids Accumulation Pattern of Oleaginous Green Microalga Scenedesmus acuminatus Large Volume Cultured in Flat Panel Photobioreactor. China Biotechnology, 2014, 34(11): 91-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141113        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I11/91


[1] Brennan L,Owende P.Biofuels from microalgae-A review of technologies for production,processing,and extractions of biofuels and co-products. Renew Sustain Energy Rev,2010,14:557-577.

[2] Hu Q,Sommerfeld M,Jarvis E,et al.Microalgaltriacylglycerols as feedstocks for biofuel production: perspectives and advances.Plant J,2008,54: 621-639.

[3] Ma F,Hanna M A.Biodiesel production: a review.Bioresource Technology,1999,70: 1-15.

[4] Dunahay T, Benemann J, Roessler P. A Look Back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae. Golden: National Renewable Energy Laboratory, 1998.

[5] Rodolfi L, Zittelli G C, Basssi N, Padovani G, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100-112.

[6] Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294-306.

[7] Huang G H, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology. Applied Energy, 2010, 87(1): 38-46.

[8] Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 2001, 57(3): 287-293.

[9] Grobbelaar J U. Physiological and technological considerations for optimising mass algal cultures. Journal of Applied Phycology, 2000, 12(3-5): 201-206.

[10] Richmond A, Boussiba S, Vonshak A, et al. A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 1993, 5(3): 327-332.

[11] Hall D O, Acién Fernández F G, Guerrero E C, et al. Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnology and Bioengineering, 2003, 82(1): 62-73.

[12] Pruvost J, Vooren G V, Gouic B L, Couzinet-Mossion A, Legrand J. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technology, 2011, 102: 150-158.

[13] Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochimica et BiophysicaActa (BBA)-Molecular and Cell Biology of Lipids, 2005, 1738(1): 63-71.

[14] Alonzo F, Mayzaud P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red. Marine Chemistry, 1999, 67(3): 289-301.

[15] Bigogno C, Khozin-Goldberg I, Boussiba S, et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 2002, 60(5): 497-503.

[16] Schenk P M, Thomas-Hall S R, Stephens E, et al. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 2008, 1: 20-43.

[17] Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493-507.

[18] Morweiser M, Kruse O, Hankamer B, et al. Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotechnology, 2010, 87: 1291-1301.

[19] Kunjapu A M, Eldridge R B, Photobioreactor design for commercial biofuel production from microalgae. Industrial Engineering and Chemical Research, 2010, 49: 3516-3526.

[20] Juneja A, Ceballos R M, Murthy G S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production:A review. Energies, 2013, 6: 4607-4638.

[21] Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 2008, 81(4): 629-636.

[22] Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 2006, 101(3): 223-226.

[23] 高保燕,沈丹丹,何思思,等. 富油微藻-尖状栅藻生物质生产与奶牛场废水处理相结合的效果研究.可再生能源,2014,32(5):673-679.
Gao B Y,Shen D D,He S S, et al. Integrated the biomass production of oleaginous microalga Scenedesmus acuminatus and dairy wastewater treatment. Renewable Energy Resources, 2014,32(5):673-679.

[24] Thompson Jr G A. Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1996, 1302(1): 17-45.

[25] Guschina I A, Harwood J L. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 2006, 45(2): 160-186.

[1] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[2] 徐欢,周美玲,葛琳,王志明. 人血清白蛋白在蛋白多肽类药物长效化中的应用 *[J]. 中国生物工程杂志, 2019, 39(1): 82-89.
[3] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[4] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[5] 赵志强,LacmataTamekouStephen,咸漠,刘修涛,冯新军,赵广. 重组大肠杆菌转化甘油合成聚3-羟基丙酸-co-乳酸 *[J]. 中国生物工程杂志, 2018, 38(2): 46-53.
[6] 左正三,郭东升,纪晓俊,宋萍,黄和. 肠道中多不饱和脂肪酸及其衍生物研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 66-75.
[7] 窦一涵, 李映, 赵鹏, 范如婷, 田平芳. 重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸[J]. 中国生物工程杂志, 2017, 37(6): 86-92.
[8] 王明轩, 陈海琴, 顾震南, 陈卫, 陈永泉. 高山被孢霉中Δ9脂肪酸脱饱和酶的表达、纯化和其细胞色素b5功能域的鉴定[J]. 中国生物工程杂志, 2017, 37(3): 43-50.
[9] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[10] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[11] 郑天祥, 钱雨农, 张大羽. 昆虫脂肪酸合成通路关键基因的研究进展[J]. 中国生物工程杂志, 2017, 37(11): 19-27.
[12] 曾斯雨, 施天穹, 石焜, 任路静, 黄和, 纪晓俊. 高山被孢霉遗传操作系统的构建与应用[J]. 中国生物工程杂志, 2016, 36(7): 112-116.
[13] 房立霞, 曹英秀, 宋浩. 工程大肠杆菌合成游离脂肪酸的研究进展[J]. 中国生物工程杂志, 2016, 36(11): 90-97.
[14] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[15] 柴鹏, 丰平仲, 王学伟, 王忠铭, 李谢昆, 袁振宏. Chlorococcum sp.混养过程碳氮调控对累积类胡萝卜素和脂肪酸成分影响研究[J]. 中国生物工程杂志, 2015, 35(7): 30-36.