Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 99-104    DOI: 10.13523/j.cb.20151114
综述     
小球藻用于生物柴油生产的研究进展
杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳
中国辐射防护研究院 太原 030006
Research of Chlorella on the Production of Biodiesel
YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang
China Institute for Radation Protection, Taiyuan 030006, China
 全文: PDF(393 KB)   HTML
摘要:

目的:对小球藻(Chlorella)生产生物柴油的研究做一综述。 方法:查阅近年来国内外小球藻用于生物柴油生产的相关文献,并进行综合分析。 结果:微藻生物柴油是具有广泛发展前景的生物柴油,小球藻是目前研究较深入、非常有吸引力的、用于生产生物柴油的微藻藻种,是优质的生物柴油原料,具有其他生物柴油原料不可比拟的优势。随着工程技术的发展和研究的不断深入,探索适宜的小球藻规模化培养方法以期获得质与量兼得的高品质油脂成为研究目标,相信该目标在不久的将来就会实现。 结论:小球藻在生物柴油生产领域具有广阔的发展前景。

关键词: 微藻生物量小球藻生物柴油油脂    
Abstract:

Objective: The recent progress in research of Chlorella on the production of diodiesel is introduced as a review. Methods: The domestic and international articles on the biodiesel production from chlorella were reviewed and summarized. Results: Microalgae biodiesel is one of the most promising biodiesel. Chiorella is an attractive microalgae spicies for biodiesel production. As its high quality for biodiesel, Chlorella has outstanding advantages compared with other biodiesel raw materials. With the development of engineering technology and the relevant research, Obtaining lipids with both high-quality and large quantity by exploring the appropriate chlorella culture methods will be futfilled in the near future. Conclusion: Chlorella has a widely promising future in the production of diodiesel.

Key words: Biodiesel    Microalgae    Chlorella    Biomass    Lipid
收稿日期: 2015-04-27 出版日期: 2015-11-25
ZTFLH:  Q819  
基金资助:

山西省科技攻关项目资助项目(20140313005-3)

通讯作者: 杨凯     E-mail: yk718349708@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.

YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel. China Biotechnology, 2015, 35(11): 99-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151114        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/99

[1] Nabi M N, Rahman M M, Akhter M S. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Applied Thermal Engineering, 2009, 29(11–12): 2265-2270.
[2] Patil P D, Deng S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel, 2009, 88(7): 1302-1306.
[3] Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3): 294-306.
[4] Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy, 2007, 35(9): 4661-4670.
[5] Balat M, Balat H. Progress in biodiesel processing. Applied Energy, 2010, 87(6): 1815-1835.
[6] Demirbas A, Demirbas M F. Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 2011, 52(1): 163-170.
[7] Widjaja A, Chien C, Ju Y. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 13-20.
[8] Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232.
[9] Converti A, Casazza A A, Ortiz E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production.Chemical Engineering and Processing: Process Intensification, 2009, 48(6): 1146-1151.
[10] Haik Y, Selim M Y E, Abdulrehman T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy, 2011, 36(3): 1827-1835.
[11] Huang G, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology. Applied Energy, 2010, 87(1): 38-46.
[12] Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil.Bioresour Technol, 2006 ,97(6):841-846.
[13] Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.
[14] Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 269-274.
[15] 梅帅,赵凤敏,曹有福,等. 三种小球藻生物柴油品质指标评价.农业工程学报,2013,29(15):229-235. Mei S, Zhao F M, Cao Y F, et al. Evaluation of quality items for biodiesel made from three kinds of chlorella vulgaris. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15):229-235.
[16] Song D, Fu J, Shi D. Exploitation of oil-bearing microalgae for biodiesel. Chinese Journal of Biotechnology, 2008, 24(3): 341-348.
[17] Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 2004, 110(1): 85-93.
[18] Garcia M C, Camacho F, Miron A, et al. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology & Biotechnology, 2006, 16(5):689-694.
[19] Wan M, Liu P, Xia J, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol, 2011, 91(3): 835-844.
[20] Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett, 2009, 31(7): 1043-1049.
[21] Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology & Bioengineering, 2009, 102(1):100-112.
[22] Breuer G, Lamers P P, Martens D E, et al. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol, 2012, 124(337): 217-226.
[23] Belotti G, Bravi M, Caprariis B D, et al. Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. American Journal of Plant Sciences, 2013, (12):44-51.
[24] Xia J X, Gong S G, Jin X J, et al. Effects of simulated flue gases on growth and lipid production of Chlorella sorokiniana CS-01. Journal of Central South University, 2013, 20(3): 730-736.
[25] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 1959, 37(8): 911-917.
[26] Demirbas A. Production of biodiesel from algae oils. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2008, 31(2):163-168.
[27] Demirbas A, Demirbas M F. Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 2011, 52(1): 163-170.
[28] Kim Y H, Choi Y K, Park J, et al. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol, 2012, 109(4): 312-315.
[29] Pernet F, Tremblay R. Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids, 2003, 38 (11): 1191-1195.
[30] Lee C G, Kang D H, Lee D B, et al. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp. Applied Biochemistry & Biotechnology, 2013, 171(5):1143-1158.
[31] Kim Y, Park S, Kim M H, et al. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using . Biomass and Bioenergy, 2013, 56(5): 99-103.
[32] Jothiramalingam R, Wang M K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res, 2009, 48(13):6162-6172.
[33] Fjerbaek L, Christensen K V, Norddahl B. A review of the current state of biodiesel products using enzymatic transesterification. Biotechnology and Bioengineering, 2009, 102(5):1298-1315.
[34] Mathimani T, Uma L, Prabaharan D. Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid-An efficient biodiesel yield and its characterization. Renewable Energy, 2015,81(9): 523-533.
[35] Patil P D, Gude V G, Mannarswamy A, et al. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 2011, 102(1):118-122.
[36] Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 2011, 102(3):2724-2730.
[37] Tran D T, Chen C L, Chang J S. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 2012, 158(3):112-119.
[38] Tran D T, Yeh K L, Chen C L, et al. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology, 2012, 108(3):119-127.
[39] Francisco E C, Neves D B, Franco T T. Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology, 2010, 85(3): 395-403.
[40] Shekh A Y, Shrivastava P, Krishnamurthi K, et al. Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Bioresour Technol, 2013, 138(2): 382-386.
[41] Ryu B, Kim E J, Kim H, et al. Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology & Bioprocess Engineering, 2014, 19(2):201-210.
[42] Farooq W, Lee Y C, Ryu B G, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol, 2013, 132(1): 230-238.
[43] De-Bashan L E, Bashan Y, Moreno M, et al. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 2002, 48(6):514-521(8).
[44] Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol, 2011, 28(4): 362-368.
[45] Xue F Y, Miao J X, Zhang X, et al. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol, 2010, 160(2): 498-503.
[46] Zhao P, Yu X, Li J, et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Journal of Bioscience and Bioengineering, 2014, 118(1): 72-77.

[1] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[2] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[5] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[6] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[7] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[8] 王彩霞, 张腾江, 滕杰, 冯旭东, 李春. 荒漠微藻的碳氧转换与调控[J]. 中国生物工程杂志, 2016, 36(10): 45-52.
[9] 车绕琼, 黄力, 王琳, 赵鹏, 李涛, 余旭亚. 葡萄糖对单针藻异养、兼养生长及油脂合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 46-51.
[10] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[11] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[12] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[13] 王美玲, 薛超友, 赵方龙, 卢文玉. 混合油脂补料发酵提高多杀菌素的产量[J]. 中国生物工程杂志, 2013, 33(8): 56-60.
[14] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[15] 汪桂林, 桂小华, 邓伟, 赵志良, 姚杰, 闫云君. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究[J]. 中国生物工程杂志, 2013, 33(3): 99-104.