Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (3): 99-105    DOI: 10.13523/j.cb.20170314
综述     
解脂耶罗维亚酵母产油脂的研究进展
夏乾竣, 王飞, 李迅
南京林业大学 江苏省林业资源高效加工利用协同创新中心 江苏省生物质绿色燃料与化学品重点实验室 南京 210037
Review of Yarrowia lipolytica for SCO Production
XIA Qian-jun, WANG Fei, LI Xun
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
 全文: PDF(557 KB)   HTML
摘要:

单细胞油脂是生产生物柴油最理想的原料,随着化石能源的日益枯竭,单细胞油脂的生产受到广泛关注。解脂耶罗维亚酵母是生产单细胞油脂的最佳菌株,它能够利用诸多廉价底物作为碳源,在工业上有极大的应用前景。其遗传背景清晰,全基因组测序已完成,基因表达系统已构建。在此基础上对油脂累积途径进行了深入研究,多株油脂含量更高的菌株被构建。深入了解解脂耶罗维亚酵母的基因表达及油脂代谢系统,对日后对其进一步的代谢改造具有重要意义。

关键词: 解脂耶罗维亚酵母表达系统单细胞油脂油脂代谢    
Abstract:

Single cell oil(SCO)is the most ideal material for biodiesel production. With the increasing depletion of fossil fuels, the production of SCO has been widely concerned. Yarrowia lipolytica is one of the best strain for the production of SCO. Many kinds of cheap substrates can be used as carbon source, so it has great application in industry. Its genetic background is clear, the whole genome sequencing has been completed, gene expression system has been constructed. On the basis of this, the oil accumulation ways were studied, and the strains with higher oil content were constructed. It has great significance to research the gene expression and lipid metabolism of Y. lipolytica for further study.

Key words: Yarrowia lipolytica    SCO    Expression    Lipid metabolism
收稿日期: 2016-10-17 出版日期: 2017-03-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金(31270612),江苏高校品牌专业建设工程(PPZY2015C22)资助项目。

通讯作者: 李迅     E-mail: xunlee@njfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.

XIA Qian-jun, WANG Fei, LI Xun. Review of Yarrowia lipolytica for SCO Production. China Biotechnology, 2017, 37(3): 99-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170314        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I3/99

[1] Barth,G and Gaillardin C. Yarrowia lipolytica Nonoconventional Yeasts in Biotechnology. Heidelberg:Springer-Verlag,1996:313-388.
[2] Nicaud J M. Yarrowia lipolytica. Yeast, 2012,29(10):409-418.
[3] Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 2002, 51(1-44):1-51.
[4] Czabany T, Athenstaedt K, Daum G. Synthesis, storage and degradation of neutral lipids in yeast. Biochimica Et Biophysica Acta, 2007, 1771(3):299-309.
[5] Beopoulos A,Cescut J,Haddouche R,et al. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research,2009,48(6):375-387.
[6] Huang C,Chen X F,Xiong L,et al. Single cell oil production from low-cost substrates:The possibility and potential of its industrialization. Biotechnology Advances,2013,31(2):129-139.
[7] 赵鹤云,黄瑛,杨江科,等. 解脂耶氏酵母表达系统研究进展. 生物加工过程, 2008, 6(3):10-16. Zhao H Y,Huang Y,Yang J K,et al. Review of Yarrowia lipolytica expression system. Chinese Journal of Bioprocess Engineering,2008, 6(3):10-16.
[8] Kerscher S, Durstewitz G, Casaregola S, et al. The complete mitochondrial genome of Yarrowia lipolytica. Comparative & Functional Genomics,,2001,2(2):80-90.
[9] Ratledge C,Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology,2002,51(1-44):1-51.
[10] Alvarez H M,Souto M F,Viale A,et al. Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. Fems Microbiology Letters,2001,200(2):195-200.
[11] Kurosawa K,Boccazzi P,de Almeida N M,et al. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. Journal of Biotechnology,2010,147(3-4):212-218.
[12] Arabolaza A,Rodriguez E,Altabe S,et al. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Applied & Environmental Microbiology,2008,74(9):2573-2582.
[13] Arora N,Patel A, Pruthi P A,et al. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology,2016,213:79-87.
[14] Mei L,Liu G L,Zhe C,et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass & Bioenergy,2010,34(1):101-107.
[15] Li Y,Zhao Z,Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme & Microbial Technology,2007,41(3):312-317.
[16] Wang Z P,Xu H M,Wang G Y,et al. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2013,1831(4):675-682.
[17] Zhao X,Kong X,Hua Y,et al. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science & Technology,2008,110(5):405-412.
[18] Nicaud J M, Fabre E, Gaillardin C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Current Genetics, 1989, 16(16):253-260.
[19] Nicaud J M, Fournier P, Bonnardière C L, et al. Use of ARS18 based vectors to increase protein production in Yarrowia lipolytica. Journal of Biotechnology, 1991, 19(2-3):259-270.
[20] Hamsa P V, Chattoo B B. Cloning and growth-regulated expression of the gene encoding the hepatitis B virus middle surface antigen in Yarrowia lipolytica. Gene, 1994, 143(2):165-170.
[21] Matsuoka M,Matsubara M,Daidoh H,et al. Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Molecular & General Genetics:MGG,1993,237(3):327-333.
[22] Müller S,Sandal T,Kamp-Hansen P,et al. Comparison of expression systems in the yeasts Saccharomyces cerevisiae,Hansenula polymorpha,Klyveromyces lactis,Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast,1998,14(14):1267-1283.
[23] Madzak C,Gaillardin C,Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica:a review. Journal of Biotechnology,2004,109(1-2):63-81.
[24] Matoba S,Ogrydziak D M. A novel location for dipeptidyl aminopeptidase processing sites in the alkaline extracellular protease of Yarrowia lipolytica. Journal of Biological Chemistry,1989,264(11):6037-6043.
[25] Madzak C,Tréton B,Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. Journal of Molecular Microbiology & Biotechnology,2000,2(2):207-216.
[26] Nicaud J M,Madzak C,Broek P V D,et al. Protein expression and secretion in the yeast Yarrowia lipolytica. Fems Yeast Research,2002,2(3):371-379.
[27] Juretzek T,Le Dall M,Mauersberger S,et al.Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast,2001. 18(2):97-113.
[28] Pignède G,Wang H J,Fudalej F,et al. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Applied & Environmental Microbiology,2000,66(8):3283-3289.
[29] Nicaud J M,Fabre E,Gaillardin C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Current Genetics,1989,16(16):253-260.
[30] Tang W,Zhang S, Wang Q,et al. The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation. Canadian Journal of Microbiology,2009,55(9):1062-1069.
[31] Li X,Wang P,Ge Y,et al. NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122:biochemical characterization and coenzyme sites evaluation. Applied Biochemistry & Biotechnology,2013,171(2):403-416.
[32] Kamzolova S V,Vinokurova N G,Lunina J N,et al. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica. Bioresource Technology,2015,193:250-255.
[33] Alexandre B,Tristan R,François K,et al. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microbial Cell Factories,2016,15(1):1-12.
[34] Aggelis G,Komaitis M. Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnology Letters,1999,21(9):747-749.
[35] Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie,2004,86(11):807-815.
[36] Beopoulos A,Nicaud J M,Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology & Biotechnology,2011,90(4):1193-1206.
[37] Kennedy E P. Biosynthesis of complex lipids. Federation Proceedings,1961,20:934-940.
[38] Dahlqvist A,Stahl U,Lenman M,et al. Phospholipid:diacylglycerol acyltransferase:an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences,2000,97(12):6487-6492.
[39] Sandager L,Gustavsson MH,Ståhl U,et al. Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry,2002,277(277):6478-6482.
[40] Athenstaedt K,Daum G. The life cycle of neutral lipids:synthesis,storage and degradation. Cellular & Molecular Life Sciences Cmls,2006,63(12):1355-1369.
[41] Yamagami S,Iida T,Nagata Y,et al. Isolation and characterization of acetoacetyl-CoA thiolase gene essential for n-decane assimilation in yeast Yarrowia lipolytica. Biochemical & Biophysical Research Communications,2001,282(3):832-838.
[42] Fickers P,Fudalej F,Dall M T L,et al. Identification and characterisation of LIP7, and LIP8, genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genetics & Biology,2005,42(3):264-274.
[43] Zhang H,Zhang L,Chen H,et al. Regulatory properties of malic enzyme in the oleaginous yeast Yarrowia lipolytica and its non-involvement in lipid accumulation. Biotechnology Letters,2013,35(12):2091-2098.
[44] Zhang H,Zhang L,Chen H,et al. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. Journal of Biotechnology,2014,192(1):78-84.
[45] Tai M,Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering,2013,15(1):1-9.
[46] Mlickova K,Luo Y,D'Andrea S,et al. Acyl-CoA oxidase a key step for lipid accumulation in the yeast Yarrowia lipolytica. Journal of Molecular Catalysis B Enzymatic,2004,28(2-3):81-85.
[47] Dulermo T,Nicaud J M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metabolic Engineering,2011,13(5):482-491.
[48] Beopoulos A,Mrozova Z,Thevenieau F,et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied & Environmental Microbiology,2008,74(24):7779-7789.
[49] Beopoulos A,Chardot T,Nicaud J M. Yarrowia lipolytica:a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie,2009,91(6):692-696.
[50] Silverman A M,Qiao K J,Xu P,et al. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology & Biotechnology,2016,100(8):3781-3798.
[51] Blazeck J,Hill A,Liu L,et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Communications,2014,5(1):49-168.

[1] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[2] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[5] 化磊召,易小萍,储炬,庄英萍,张嗣良. 基于PAT的PCV2 VLPs生产过程优化与控制研究[J]. 中国生物工程杂志, 2018, 38(8): 50-58.
[6] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[7] 武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波. 毕赤酵母工程菌高密度发酵研究与进展[J]. 中国生物工程杂志, 2016, 36(1): 108-114.
[8] 王晓艳, 陈娜子, 艾君, 赵央, 吴美玉, 黄金枝, 姜潮, 李校堃. HBVpre-c-Fc融合蛋白在杆状病毒表达系统中的表达及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(4): 42-47.
[9] 路青山, 乔媛媛, 李金凤, 王运良, 王姗姗, 史成和, 杨霄鹏, 张达矜. 人HPPCn重组蛋白可溶性表达及其增殖活性检测[J]. 中国生物工程杂志, 2015, 35(12): 15-20.
[10] 张旭, 王晶晶, 刘建平. 基于启动子和宿主改造的酿酒酵母表达系统优化研究[J]. 中国生物工程杂志, 2015, 35(1): 61-66.
[11] 朱小静, 姜潮, 薛萍, 王晓艳, 徐丹, 南佳, 艾君, 李校堃. 重组角质细胞生长因子-1在杆状病毒表达系统中的表达及其生物活性研究[J]. 中国生物工程杂志, 2013, 33(3): 47-53.
[12] 朱钧萍, 李改瑞, 杜启科, 郭中敏, 陆家海. HβD-3在大肠杆菌中的融合表达与纯化[J]. 中国生物工程杂志, 2013, 33(11): 68-74.
[13] 郭莉莉, 欧霞, 米锴, 孙茂盛, 李鸿钧. EV71类病毒颗粒的表达和免疫原性的初步评价[J]. 中国生物工程杂志, 2013, 33(1): 8-13.
[14] 杨波, 陈海琴, 宋元达, 张灏, 陈卫. 动物双歧杆菌肌球交叉反应抗原MCRA酶学功能的研究[J]. 中国生物工程杂志, 2012, 32(12): 30-36.
[15] 艾佐佐, 颜日明, 袁锦云, 张志斌, 朱笃. 响应面法优化木薯淀粉发酵生产单细胞油脂工艺[J]. 中国生物工程杂志, 2012, 32(07): 66-72.