Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 63-73    DOI: 10.13523/j.cb.20170210
研究报告     
Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究
韦璇1,2, 郝雅荞1,2, Susanna Leong Su Jan3, 吴言2, 柳叶飞1, 赵洪新2
1. 沈阳师范大学 生命科学学院 沈阳 110034;
2. 浙江理工大学 生命科学学院 浙江省植物与次生代谢重点实验室 杭州 310018;
3. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
Selective Uptake and Increased Accumulation of Free Saturated Fatty Acids by the Yeast Saccharomyces cerevisiae and Yarrowia lipolytica
WEI Xuan1,2, HAO Ya-qiao1,2, Susanna Leong Su Jan3, WU Yan2, LIU Ye-fei1, ZHAO Hong-xin2
1. College of Life Science Shenyang Normal University, Shenyang 110034, China;
2. Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China;
3. School of Chemical and Biomedical Engineering, Nanyang Technological University 369798, Singapore
 全文: PDF(1330 KB)   HTML
摘要:

利用产油微生物生产特殊功能、高附加值的脂肪酸,具有良好的开发利用前景。以酿酒酵母(S. cerevisiae)和解脂耶氏酵母(Y. lipolytica)为出发菌株,以链长C4-C18的单一自由饱和脂肪酸作为唯一碳源,探究了两类酵母吸收利用、积累脂肪酸情况及胞内脂肪酸组成情况。结果表明:当碳链长C≤10时不能被利用,而且抑制细胞的生长,特别是当碳链长C≤8时,细胞很快被杀死;当碳链长C=11时,对细胞的生长有一定的抑制作用,菌体长势缓慢;碳链长C≥12时,对细胞生长没有影响;脂肪酸利用速度,偶数C脂肪酸 > 奇数C脂肪酸;Nile red全细胞脂类染色显示,S. cerevisiae胞内脂质主要集中于胞内周边膜部位,Y. lipolytica主要以脂质体形式存在胞内,及少部分在胞内周边膜部位;GC/Mass脂类成分分析表明,菌株S. cerevisiae S228C BY4741-pox1和S. cerevisiae S228C BY4741-pox1,3可以积累培养基添加的相应脂肪酸,而其他供试菌积累的脂肪酸链长C≥16,没有检测到培养基含有相应的脂肪酸。这些结果为利用酵母生产特殊功能脂肪酸,及开发特色高附加值油脂提供了有意义的参考。

关键词: 毒性微生物油脂产油酵母自由脂肪酸    
Abstract:

It has quite significance and broad application prospects to develop novel strategies to produce special functional fatty acids with high added value by oleaginous microorganisms. Two kinds of yeasts S. cerevisiae and Y. lipolytica were selected to test how to selective uptake and increased accumulation of free saturated fatty acids. The results shown that when C ≤ 10 carbon chain length,free saturated fatty acids couldn't be uptaked and utilized on the contrary to suppresses the growth of cell, especially C≤ 8 cells were killed quickly; When C = 11, it had certain inhibitory effect on the growth of cells which leads to the weak growth of bacteria; When C ≥12, it had no impact on cell growth and cells grew well; Even C fatty acids was digested faster than the base C fatty acids; Lipid body could be visualized by fluorescence microscopy of cells stained with Nile red. No significant variations were observed in S. cerevisiae or its mutants grown on YNBD. Where only a few small LB were observed in Y. lipolytica grown on YNBD. After growth YNBF medium, Y. lipolytica strain contained several larger LB and a few smaller ones in cell; The experiment of GC/Mass analysis indicated that the most of fatty acids except long-chain fatty acid (C≥16) could be uptaked and accumulated by S. cerevisiae S228C BY4741-pox1 or S. cerevisiae S228C BY4741-pox1, 3 from culture medium, however medium-chain fatty acid couldn't be accumulated by original S. cerevisiae S228C BY4741. Thus, yeast could uptake and accumulate saturated fatty acid based on different carbon chain length. The most of fatty acids except long-chain fatty acid (C≥16) could be uptaked and accumulated by S. cerevisiae S228C BY4741-pox1 or S. cerevisiae S228C BY4741-pox1, 3 mutants from culture medium. The most of fatty acids also could be uptaked by Y. lipolytica from culture medium in cell.

Key words: Free fatty acids    Oleaginous yeast    Toxicity    Microbial oils
收稿日期: 2016-07-21 出版日期: 2017-02-25
ZTFLH:  Q819  
基金资助:

辽宁省科学事业公益基金项目(2014003020)、浙江省自然科学基金(LY16C030002)资助项目

通讯作者: 赵洪新     E-mail: bxxbj2003@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.

WEI Xuan, HAO Ya-qiao, Susanna Leong Su Jan, WU Yan, LIU Ye-fei, ZHAO Hong-xin. Selective Uptake and Increased Accumulation of Free Saturated Fatty Acids by the Yeast Saccharomyces cerevisiae and Yarrowia lipolytica. China Biotechnology, 2017, 37(2): 63-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170210        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/63

[1] Bonturi N, Matsakas L, Nilsson R, et al. Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides:selection of extraction strategies and biodiesel property prediction. Energies, 2015, 8(6):5040-5052.
[2] Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I:Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 2011, 113:1031-1051.
[3] Espinosa G I, Parashar A, Bressler D C. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production. Journal of Biotechnology, 2014, 187:10-15.
[4] Xin M, Yang J M, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34(1):1-5.
[5] 朱法科,林炜铁,鲍时翔, 等.花生四烯酸高产菌株的选育. 工业微生物, 1999, 29:1-3. Zhu F K, Lin W T, Bao S X, et al. Selection and breeding of high yield peanut four acid producing strain. Industrial Microbiology, 1999,29:1-3.
[6] 刘波,孙艳,刘永红,等 产油微生物油脂生物合成与代谢调控研究进展. 微生物学报, 2005, 45(1):153-156. Lu B, Sun Y, Liu Y H, et al. Research progress in biosynthesis and metabolism regulation by oleaginous microorganisms. Acta Microbiologica Sinica, 2005, 45(1):153-156.
[7] 贾彬,王亚南,何蔚红, 等. 生物柴油新原料-微生物油脂. 生物技术通报, 2014, 1:19-26. Jia B, Wang Y N, He W H, et al. New biodiesel raw material microbial lipid. Biotechnology Bulletin, 2014, 1:19-26.
[8] Runguphan W, Jay D K. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid derived biofuels and chemicals.Metabolic Engineering, 2014, 21:103-113.
[9] Shen Q, Lin H, Wang Q, et al. Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation. Bioresource Technology, 2015, 176:249-256.
[10] Papanikolaou S, Aggelis G. Selective uptake of fatty acids by the yeast Yarrowia lipolytica. European Journal of Lipid Science and Technology, 2003, 105:651-655.
[11] Papanikolaou S, Chevalot I, Komaitis M, et al. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 2002, 58:308-312.
[12] 李小英,聂小安,陈洁,等. 微生物油脂制备生物柴油技术研究现状及发展趋势. 生物质化学工程, 2015, 45(6):37-43. Li X Y, Nie X A,Chen J, et al. Research status and development trendency of biodiesel preparation from microbial lipid. Biomass Chemical Engineering, 2015, 45(6):37-43.
[13] Sander M H, Sara V, Fatima V V, et al.The Biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annual Review of Physiology, 2016,78:23-24.
[14] Kalervo H J, Anu M M, Hanspeter R K, et al.The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2003,27(1):35-64.
[15] Janice S C, Brendan C, Brendon D, et al. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ 3:e1468 https://doi.org/10.7717/peerj.1468
[16] Weerawat R, Jay D K. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering, http://dx.doi.org/10.1016/j.ymben.2013.07.003.
[17] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning:A Laboratory Manual, 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989.
[18] Boeke J D, Lacroute F, Fink G R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Molecular and General Genetics, 1984, 197(2):345-346.
[19] Gueldener U, Heinisch J, Koehler G J, et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 2002, 15:30(6):e23.
[20] Horvath A, Riezman H. Rapid protein extraction from Saccharomyces cerevisiae. Yeast, 1994, 10 (10):1305-1310.
[21] Martin A, Francesco G. A single-step method for rapid extraction of total lipids from green microalgae. PLoS One, 2014, 9(2):e89643.
[22] Andréina L, Alexandre D K, Stéphane D.Development of solid-phase extraction and methylation procedures to analyse free fatty acids in lipid-rich seeds. Plant Physiology and Biochemistry, 2007, 45:250-257.
[23] Athanasios B, Mrozova Z, France T, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 2008, 74(24):7779-7789.
[24] Stephanie J N, Barbara H S, Boyd B D, et al. Solid-phase extraction in combination with GC/MS for the quantification of free fatty acids in adipocere. European Journal of Lipid Science and Technology, 2008, 110:73-80.
[25] Schneiter R, Kohlwein S D. Organelle structure, function, and inheritance in yeast:a role for fatty acid synthesis. Cell, 1997, 88:431-434.
[26] Oksana T, Kim S, Kohlwein S D. Fatty acid synthesis and elongation in yeast. Biochimica et Biophysica Acta, 2007, 1771:255-270.
[27] Wang T W, Luo Y, Small G M. The POXl gene encoding peroxisomal acyl-CoA oxidase in Saccharomyces cereuisiae is under the control of multiple regulatory elements. The Journal of Biological Chemistry, 1994,269(39):24480-24485.
[28] Guo Y Q, Song H L,Wang Z Y, et al. Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production. Microbiological Research, 2012, 167(4):246-252.

[1] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.
[2] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[3] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[4] 刘彦礼, 牛荣成, 杨芬, 朱文慧, 林俊堂. 金葡菌类肠毒素K原核表达载体构建及其生物学活性分析[J]. 中国生物工程杂志, 2015, 35(12): 45-50.
[5] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[6] 苏燕南, 薛正莲, 陈涛, 马琦亚. 粘质沙雷氏菌PL-06磷脂酶A1基因大肠杆菌优化表达[J]. 中国生物工程杂志, 2013, 33(7): 36-42.
[7] 王姝, 朱远茂, 蔡红, 马磊, 史鸿飞, 吕闯, 董秀梅, 高欲燃, 薛飞. 牛病毒性腹泻病毒E2蛋白单克隆抗体的制备及初步鉴定[J]. 中国生物工程杂志, 2013, 33(4): 40-45.
[8] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[9] 徐义刚, 李丹丹, 刘忠梅, 崔丽春, 李苏龙. 产肠毒性大肠杆菌DPO-PCR检测方法的建立与应用[J]. 中国生物工程杂志, 2013, 33(11): 75-80.
[10] 马伟峰, 杨飞华, 赵海山, 杜军, 蔡绍晖. FAPα酶激活式靶向抗肿瘤前药: Z-GP-Dox对斑马鱼的毒性评价[J]. 中国生物工程杂志, 2012, 32(07): 37-42.
[11] 牛秋红 董冰雪 黄思良 惠丰立 柯涛 张林. 松材线虫生防细菌的筛选、鉴定及其毒性因子的初步研究[J]. 中国生物工程杂志, 2010, 30(08): 76-81.
[12] 张静 刘环 周晶 刘建华. 通过断裂内含肽介导的反式剪接合成大的蛋白[J]. 中国生物工程杂志, 2009, 29(12): 74-78.
[13] 曹小红,闫乐,王春玲,焦润芝,鲁梅芳. γ-聚谷氨酸与D-半乳糖酯化衍生物-顺铂复合物的制备及其生物活性[J]. 中国生物工程杂志, 2009, 29(03): 41-46.
[14] 杨文娟,沈涔超,张治洲. 检测纳米材料毒性的若干实验方法[J]. 中国生物工程杂志, 2009, 29(02): 119-124.
[15] 谢群,包永明. 蛇毒磷脂酶A2的结构与功能[J]. 中国生物工程杂志, 2008, 28(专刊): 251-258.