Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (12): 36-41    DOI: DOI:10.13523/j.cb.20161206
研究报告     
Y13F定点突变改良米曲霉中温木聚糖酶的耐热性
吴芹1, 胡蝶1, 李雪晴2, 袁风娇2, 李剑芳2, 邬敏辰3
1. 江南大学生物工程学院 无锡 214122;
2. 江南大学食品学院 无锡 214122;
3. 江南大学无锡医学院 无锡 214122
Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae
WU Qin1, HU Die1, LI Xue-qing2, YUAN Feng-jiao2, LI Jian-fang2, WU Min-chen3
1. School of Biotechnology, Jiangnan University, Wuxi 214122, China;
2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
3. Wuxi Medical School, Jiangnan University, Wuxi 214122, China
 全文: PDF(643 KB)   HTML
摘要:

为改良米曲霉(Aspergillus oryzae)糖苷水解酶11家族木聚糖酶AoXyn11A的耐热性,将其Tyr13(Y13)置换为Phe(F)。基于AoXyn11A与同一家族7种耐热木聚糖酶一级结构的多序列同源比对及其三维结构的同源建模和分子动力学模拟,设计了一种突变酶AoXyn11AY13F;以重组质粒pPIC9K-Aoxyn11A为模板,采用PCR技术将AoXyn11A基因(Aoxyn11A)中编码Y13的密码子TAC突变为F的TTC,构建了一种突变酶基因(Aoxyn11AY13F);分别将Aoxyn11AAoxyn11AY13F在毕赤酵母(Pichia pastoris)GS115中实施了表达,并对重组表达产物AoXyn11A和AoXyn11AY13F的耐热性进行了分析。结果表明:突变酶的最适温度Topt由突变前的50℃提高到55℃;AoXyn11AY13F在50℃的半衰期t1/250为95 min,较AoXyn11A(t1/250=6 min)延长了约15倍。由此经Y13F定点突变显著改良了野生型木聚糖酶的耐热性。

关键词: 定点突变N端区域疏水相互作用木聚糖酶耐热性    
Abstract:

To improve the thermotolerance of AoXyn11A, a glycoside hydrolase family 11 mesophilic xylanase from Aspergillus oryzae, the amino acid residue Tyr13(Y13) was replaced by Phe (F). Based on the multiple alignment of the primary structures of AoXyn11A and seven thermophilic xylanases, the homology modeling of AoXyn11A and molecular dynamics (MD) simulation on its three-dimensional structure, a mutant enzyme AoXyn11AY13F was designed. Using pPIC9K-Aoxyn11A as a template, a mutant xylanase-encoding gene Aoxyn11AY13F was constructed by mutating a Y13-encoding codon TAC of Aoxyn11A into a F-encoding TTC with PCR technique. Then, Aoxyn11A and Aoxyn11AY13F were expressed in Pichia pastoris GS115, respectively, and the thermotolerance of expressed recombinant products, AoXyn11A and AoXyn11AY13F, were analyzed. The results indicated that the temperature optimum (Topt) of AoXyn11AY13F was 55℃, higher than that (50℃) of AoXyn11A, and that the half-life at 50℃ (t1/250) was 95 min, which was 15 fold longer than that (t1/250=6 min) of AoXyn11A. The thermotolerance of wild-type AoXyn11A were significantly improved by site-directed mutagenesis of Y13F.

Key words: N-terminal region    Xylanase    Thermotolerance    Site-directed mutagenesis    Hydrophobic interaction
收稿日期: 2016-06-06 出版日期: 2016-12-25
ZTFLH:  Q936  
基金资助:

国家自然科学基金资助项目(31271811)

通讯作者: 邬敏辰     E-mail: biowmc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.

WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae. China Biotechnology, 2016, 36(12): 36-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/DOI:10.13523/j.cb.20161206        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I12/36

[1] Collins T, Gerday C, Feller G. Xylanases:xylanase families and extremephilic xylanases. FEMS Microbiol Rev, 2005, 29(1):3-23.
[2] Zhang H M, Li J F, Wang J Q, et al. Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods. Biotechnol Biofuels, 2014, 7(1):1-10.
[3] Zhang S, Zhang K, Chen X Z, et al. Five mutations in N-terminus confer thermostability on mesophilic xylanase. Biochem Biophys Res Commun, 2010, 395(2):200-206.
[4] Turunen O, Etuaho K, Fenel F, et al. A combination of weakly stabilizing mutations with a disulfide bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanaseⅡ increases the thermal stability through synergism. J Biotechnol, 2001, 88(1):37-46.
[5] Georis J, de Lemos Esteves F, Lamotte-Brasseur J, et al. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase:Structural basis and molecular study. Protein Sci, 2000, 9(3):466-475.
[6] Li J F, Gao S J, Liu X T, et al. Modified pPIC9K vector-mediated expression of a family 11 xylanase gene, Aoxyn11A, from Aspergillus oryzae in Pichia pastoris. Ann Microbiol, 2013, 63(3):1109-1120.
[7] Wang J Q, Zhang H M, Wu M C, et al. Cloning and sequence analysis of a novel xylanase gene, Auxyn10A, from Aspergillus usamii. Biotechnol Lett, 2011, 33(5):1029-1038.
[8] Dumon C, Varvak A, Wall M A, et al. Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem, 2008, 283(33):22557-22564.
[9] Hakulinen N, Turunen O, Jänis J, et al. Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa.Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem, 2003, 270(7):1399-1412.
[10] Zhao L, Geng J, Guo Y, et al. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol, 2015, 15:18.
[11] Zhang F, Chen J J, Ren W Z, et al. Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462T. J Ind Microbiol Biotechnol, 2012, 39(8):1109-1116.
[12] Zhang M, Jiang Z, Yang S, et al. Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour Technol, 2010, 101(2):688-695.
[13] Sriyapai T, Somyoonsap P, Matsui K, et al. Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng, 2011, 111(5):528-536.
[14] Morris D D, Gibbs M D, Chin C W, et al. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol, 1998, 64(5):1759-1765.
[15] 柏文琴, 王钦宏, 马延和. 嗜热和嗜碱木聚糖酶研究进展. 生物工程学报, 2014, 30(6):828-837. Bai W Q, Wang Q H, Ma Y H. Progress in the thermophilic and alkalophilic xylanases. Chinese J Biotechnol, 2014, 30(6):828-837.
[16] 阎隆飞, 孙之荣. 蛋白质分子结构. 北京:清华大学出版社, 1999.17-18. Yan L F, Sun Z R. Molecular Structure of Protein. Beijing:Tsinghua University Press, 1999.17-18.
[17] Vieille C, Zeikus G J. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability.Microbiol Mol Biol Rev, 2001, 65(1):1-43.
[18] Badieyan S, Bevan D R, Zhang C. Study and design of stability in GH5 cellulases. Biotechnol Bioeng, 2012, 109(1):31-44.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[5] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[6] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[7] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[8] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[9] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[10] 李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.
[11] 高瑞平, 程隆斌, 李振秋. 一种简便快速的单引物PCR定点突变方法[J]. 中国生物工程杂志, 2015, 35(5): 61-65.
[12] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[13] 阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.
[14] 裴智勇, 侯仙慧, 桂小柯, 陈禹保. Primer Spanner:一个高效的定点突变PCR引物设计在线工具[J]. 中国生物工程杂志, 2015, 35(10): 53-58.
[15] 杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.