Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (10): 1-7    DOI: 10.13523/j.cb.20141001
研究报告     
A和C结构域糖基化位点对凝血八因子的分泌及活性的影响
杲光伟, 李桂林, 黄家语, 李大伟
上海交通大学药学院 上海 200240
Study of the Effects of A and C-Domain Glycosylation Sites on the Secretion and Activity of Recombinant Factor Ⅷ
GAO Guang-wei, LI Gui-lin, HUANG Jia-yu, LI Da-wei
School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
 全文: PDF(1682 KB)   HTML
摘要:

在血液来源和血液制品安全隐患制约下,基因工程重组凝血八因子已开始替代天然八因子用以治疗血友病等病症,但目前高效表达重组八因子的方法在我国仍有技术瓶颈.该项目利用定点突变技术,通过PCR、质粒抽提、转染以及产物检测这四个步骤来研究重组凝血八因子在A和C结构域添加糖基化位点对八因子表达及活性的影响.结果表明,在重组八因子A结构域Bip结合位点外端增加糖基化位点能够促进八因子的细胞外分泌量,而在Bip结合位点内的突变则不但大大减少了八因子的胞外分泌也使八因子活性几乎全部丧失.与A结构域不同,在八因子C结构域增加糖基化位点的结果表明,无论在蛋白C结合区之内或之外增加糖基化位点不但不能大幅提高八因子的胞外分泌,也使八因子活性基本丧失.这些结果说明只有在A结构域外缘的非Bip结合区进行糖基化改造,才有可能提高八因子分泌并保持其活性.

关键词: 血友病重组凝血八因子糖基化定点突变    
Abstract:

Because of the safety concerns of blood sources and whole blood products, genetically engineered recombinant factor Ⅷ have begun to replace blood-derived factor Ⅷ for the treatment of hemophilia and related diseases. However, the relatively low expression level of recombinant factor Ⅷ remains a major technology bottleneck to reduce the cost of recombinant factor Ⅷ production. To explore the possible means to increase recombinant factor Ⅷ expression at molecular level, site-directed mutagenesis techniques were used to generate potential glycosylation sites around A and C domains of a B-domain deleted recombinant F Ⅷ and tested the activity, expression and secretion of various glycosylation constructs. The results showed that generating glycosylation sites at the outer edges of domain A increased secretion of factor Ⅷ while those glycosylation sites generated at the Bip-binding core not only greatly reduced the secretion but also abolished the activity of Factor Ⅷ. Different from A-domain, the glycosylation sites generated in C-domain abolished most factor Ⅷ activity without increasing its secretion regardless whether they were located at the core protein-C binding site or at the edge of C-domain. Taken together, the results suggest that the only glycosylation sites with the potential of increasing factor Ⅷ secretion are located around the edge of A-domain.

Key words: Hemophilia    Recombinated Factor Ⅷ    Glycosylation    Site-directed mutation
收稿日期: 2014-03-18 出版日期: 2014-10-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金(81201769,81373319)、上海市科委生物医药重点科技攻关项目(10431903900)资助项目

通讯作者: 李大伟     E-mail: daweili@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.

GAO Guang-wei, LI Gui-lin, HUANG Jia-yu, LI Da-wei. Study of the Effects of A and C-Domain Glycosylation Sites on the Secretion and Activity of Recombinant Factor Ⅷ. China Biotechnology, 2014, 34(10): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141001        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I10/1


[1] Fang H, Wang L,Wang H. The protein structure and effect of factor Ⅷ. Thromb Res, 2007, 119(1): 1-13.

[2] Saenko E L, Shima M,Sarafanov A G. Role of activation of the coagulation factor Ⅷ in interaction with vWf, phospholipid, and functioning within the factor Xase complex. Trends Cardiovasc Med, 1999, 9(7): 185-192.

[3] Nemes L, Pollmann H,Becker T. Interim data on long-term efficacy, safety and tolerability of a plasma-derived factor Ⅷ concentrate in 109 patients with severe haemophilia A. Haemophilia, 2012, 18(2): 496-502.

[4] Fay PJ. Activation of factor Ⅷ and mechanisms of cofactor action. Blood Rev, 2004, 18(1): 1-15.

[5] Gale A J, Cramer T J, Rozenshteyn D, et al. Detailed mechanisms of the inactivation of factor Ⅷa by activated protein C in the presence of its cofactors, protein S and factor V. J Biol Chem, 2008, 283(24): 16355-16362.

[6] Plantier J L, Rolli V, Ducasse C, et al. Activated factor X cleaves factor Ⅷ at arginine 562, limiting its cofactor efficiency. J Thromb Haemost, 2009, 8(2): 286-293.

[7] Graw J, Brackmann H H, Oldenburg J, et al. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet, 2005, 6(6): 488-501.

[8] Lee C A. The natural history of HIV disease in haemophilia. Blood Rev, 1998, 12(3): 135-144.

[9] Lee C,Dusheiko G. The natural history and antiviral treatment of hepatitis C in haemophilia. Haemophilia, 2002, 8(3): 322-329.

[10] Zhang L, Zhao Y, Sun J, et al. Six-month clinical observation on safety and efficacy of a full-length recombinant factor Ⅷ for on-demand treatment of Chinese patients with haemophilia A. Haemophilia, 2011, 17(3): 538-541.

[11] Powell J S. Recombinant factor Ⅷ in the management of hemophilia A: current use and future promise. Ther Clin Risk Manag, 2009, 5(2): 391-402.

[12] Miao H Z, Sirachainan N, Palmer L, et al. Bioengineering of coagulation factor Ⅷ for improved secretion. Blood, 2004, 103(9): 3412-3419.

[13] Egrie J C,Browne J K. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant, 2001, 16(Suppl 3): 3-13.

[14] Darling R J, Kuchibhotla U, Glaesner W, et al. Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostatic interactions. Biochemistry, 2002, 41(49): 14524-14531.

[15] Jelkmann W. Recombinant EPO production——points the nephrologist should know. Nephrol Dial Transplant, 2007, 22(10): 2749-2753.

[16] Robinson A S, Bockhaus J A, Voegler A C, et al. Reduction of Bip levels decreases heterologous protein secretion in Saccharomyces cerevisiae. J Biol Chem, 1996, 271(17): 10017-10022.

[17] Hoeben R C, Fallaux F J, Cramer S J, et al. Expression of the blood-clotting factor-Ⅷ cDNA is repressed by a transcriptional silencer located in its coding region. Blood, 1995, 85(9): 2447-2454.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[5] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[6] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[7] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[8] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[9] 李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.
[10] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[11] 刘啸尘,刘护,张良,李春. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.
[12] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[13] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[14] 黄嘉慧, 汪才坤, 覃锦红, 陈龙冠, 黄云娜, 谢秋玲. N-糖基化对TNFR-Fc融合蛋白结构稳定性和生物活性的影响[J]. 中国生物工程杂志, 2016, 36(5): 12-19.
[15] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.