Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 15-20    DOI: 10.13523/j.cb.20161003
研究报告     
决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析
向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕
西南交通大学生命科学与工程学院 成都 610031
The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor
XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu
Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1126 KB)   HTML
摘要:

决明胰蛋白酶抑制剂1(CoTI1)属于Kunitz胰蛋白酶抑制剂家族成员,通过序列比对预测Arg86、Leu84和Thr88等3个氨基酸残基可能是CoTI1发挥抑制作用的关键残基。通过定点突变的方法将Arg86、Leu84与Thr88残基分别突变为Asp残基,并考察各突变体对胰蛋白酶及棉铃虫等鳞翅目害虫消化酶的抑制作用。与CoTI1相比,CoTI1R86D、CoTI1T88D与CoTI1L84D突变体对胰蛋白酶的抑制活性分别下降了93%、64%与59%;对棉铃虫、甜菜夜蛾、斜纹夜蛾等3种鳞翅目害虫消化酶的平均抑制活性分别下降了88.7%、57%与60.7%。以上结果表明Arg86、Leu84与Thr88是CoTI1发挥抑制作用的关键残基,这为CoTI1的抑制分子机制及抗虫研究提供了重要的理论依据。

关键词: 胰蛋白酶抑制剂定点突变决明    
Abstract:

A trypsin inhibitor (CoTI1) from Cassia obtusifolia was attributed to the Kunitz-type trypsin inhibitor family. According to the sequence alignment, Arg86, Leu84 and Thr88 might be the key residues of CoTI1. In order to confirm the speculation, the three above residues were replaced as Asp by site-directed mutagenesis, respectively, and analysis the inhibitory activity of the mutants and CoT1 to trypsin and insects' digestive enzyme. Compared with CoT1, the inhibitory activity of the mutant CoTI1R86D to trypsin decreased most obviously, and the inhibitory effect of the original 93% was lost. CoTI1L84D lost 59% of the inhibitory effect; while the inhibitory activity of CoTI1T88D decreased by 64%. The average inhibitory activity decreased 88.7%, 57% and 60.7% to digestive enzymes of Helicoverpa armigera, Beet armyworm and Spodoptera litura, respectively. The result shows that Arg86, Leu84 and Thr88 are the key residues of CoT1, and it was useful for the molecular mechanism and anti-insects study of CoTI1.

Key words: Cassia obtusifolia    Trypsin inhibitor    Site-directed mutagenesis
收稿日期: 2016-04-26 出版日期: 2016-10-25
ZTFLH:  Q754  
基金资助:

国家自然科学基金(31371232,31500276)、成都市科技技术研发项目(2015-HM01-00051-SF)资助项目

通讯作者: 廖海,电子信箱:ddliaohai@home.swjtu.edu.cn;周嘉裕,电子信箱:spinezhou@home.swjtu.edu.cn     E-mail: ddliaohai@home.swjtu.edu.cn;spinezhou@home.swjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.

XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor. China Biotechnology, 2016, 36(10): 15-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161003        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/15

[1] Lee S I, Koo J C, Chun H J, et al. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Molecular Breeding, 1999, 5(1):1-9.
[2] Hai L, Wei R, Zhuang K, et al. A trypsin inhibitor from Cassia obtusifolia seeds: isolation, characterization and activity against Pieris rapae. Biotechnology Letters, 2007, 29(4):653-658.
[3] 赵洪锟, 李启云, 王玉民,等.多年生野生大豆Kunitz型胰蛋白酶抑制剂基因的克隆及分析. 大豆科学, 2010, 29(2):191-194. Zhao H K, Li Q Y, Wang Y M, et al. The Cloning and analysis of Kunitz-type trypsin inhibitor gene from wild soybean. Soybean Science,2010, 29(2):191-194.
[4] 阮景军, 杨毅, 唐自钟,等. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究. 中国生物工程杂志, 2015, 30(12): 30-36. Ruan J J, Yang Y, Tang Z Z, et al. Study on tartary buckwheat trypsin inhibitor activity sites by using site-directed mutagenesis. China Biotechnology, 2015, 30(12): 30-36.
[5] Oliva M L, Silva M C, Sallai R C, et al. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie, 2010, 92(11):1667-1673.
[6] Marcos Sebastián D, Santiago I, Horacio H. The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation. Plos One, 2012, 5(12):3781-3793.
[7] Wang R C, Sun J H, Shu-Dong H E, et al. Recent advance in research on the structure and function of trypsin inhibitor. Food Science, 2013, 34(9):364-368.
[8] Luo Y J, Bin L I, Shu H P, et al. Research advances in Kunitz trypsin inhibitor. Chinese Journal of Biochemical Pharmaceutics, 2012, 33(3):316-319.
[9] Zhou D, Lobo Y A, Batista I F, et al. Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. Plos One, 2013, 8(4):e62252.
[10] Nixon A E, Wood C R. Engineered protein inhibitors of proteases. Current Opinion in Drug Discovery & Development, 2006, 9(2):261-268.
[11] Oliveira A S, Migliolo L, Aquino R O, et al. Two Kunitz-type inhibitors with activity against trypsin and papain from Pithecellobium dumosum seeds: purification, characterization, and activity towards pest insect digestive enzyme. Protein & Peptide Letters, 2009,16(12):1526-1532.
[12] Wei D S, LiM C, Zhang X X, et al. An improvement of the site-directed mutagenesis method by combination of megaprimer, one-side PCR and DpnI treatment. Analytical Biochemistry, 2004, 331(2):401-403.
[13] 冯莹颖, 张强, 周青春,等. 一步法定点突变技术快速构建bsh基因突变启动子. 生物技术, 2009, 19(5): 28-32. Feng Y Y, Zhang Q, Zhou Q C, et al. Construction of bsh promoter mutants by rapid one-step site-directed mutagenesis. Biotechnology, 2009, 19(5): 28-32.
[14] Erlanger B F, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry & Biophysics, 1961,95(2):271-278.
[15] Lingaraju M H, Gowda L R. A Kunitz trypsin inhibitor of Entada scandens seeds: Another member with single disulfide bridge. Biochimica et Biophysica Acta, 2008, 1784(5):850-855.
[16] Do SMCM, Oliva M L, Fritz H, et al. Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii. Biochemical & Biophysical Research Communications, 2002, 291(3):635-639.
[17] 李晨. 一种重组荞麦胰蛋白酶抑制剂的纯化及特性.太原:山西大学, 2006. Li C. The Purification and characterization of a recombinant buckwheat trypsin inhibitor.Taiyuan:Shanxi University,Learned Periodical Society, 2006.
[18] Mittal A, Kansal R, Kalia V, et al. A kidney bean trypsin inhibitor with an insecticidal potential against Helicoverpa armigera and Spodoptera litura. Acta Physiologiae Plantarum, 2014, 36(2):525-539.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[5] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[6] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[7] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[8] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[9] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[10] 李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.
[11] 高瑞平, 程隆斌, 李振秋. 一种简便快速的单引物PCR定点突变方法[J]. 中国生物工程杂志, 2015, 35(5): 61-65.
[12] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[13] 阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.
[14] 裴智勇, 侯仙慧, 桂小柯, 陈禹保. Primer Spanner:一个高效的定点突变PCR引物设计在线工具[J]. 中国生物工程杂志, 2015, 35(10): 53-58.
[15] 杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.