Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (12): 30-36    DOI: 10.13523/j.cb.20151205
研究报告     
基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究
阮景军1,2, 杨毅1, 唐自钟1, 陈惠1
1. 四川农业大学 生命科学学院 雅安 625014;
2. 武汉生物工程学院 生物科学与技术学院 武汉 430415
Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis
RUAN Jing-jun1,2, YANG Yi1, TANG Zi-zhong1, CHEN Hui1
1. College of Life, Sichuan Agricutural University, Ya'an 625014, China;
2. College of Biological Science and Technology, Wuhan Institute of Biological Engineering, Wuhan 430415, China
 全文: PDF  HTML
摘要:

目的:为了研究胰蛋白酶抑制剂的活性位点,揭示FtTI结构与功能的关系。将FtTI和突变体aFtTI-R65L,aFtTI-D67V和aFtTI-R65L/D67V经IPTG诱导培养5h,收集菌液经过超声波破碎得到粗产物,经过纯化后的胰蛋白酶抑制剂对胰蛋白酶的摩尔抑制比分别为1:1,1:1.15,1:1.3,1:1.2;抑制常数Ki分别为1.62nM,1.69 nM,1.9 nM,1.8 nM (BApNA作为底物)。结果:SDS-PAGE分析表明突变前和突变后表达产物胰蛋白酶抑制剂的大小一致,均为9.5 kDa。对突变体aFtTI-R65L,aFtTI-D67V和aFtTI-R65L/D67V抑制反应温度研究表明,其最适反应温度均为40℃。在10~80℃保温30 min后,突变体对胰蛋白酶的抑制活性仍保留80%以上;在90℃保温30 min,突变体的抑制活性开始显著下降,只保留其39%。具有较高的耐热性。将aFtTI在pH 3.0~10.0的不同缓冲溶液中放置30 min后,其抑制活性可保留90%左右,在pH 2.0条件下,aFtTI抑制活性丧失约31%;在pH 11.0条件下,aFtTI抑制活性丧失约43%。结论:对苦荞麦蛋白酶抑制剂FtTI的定点突变并不会改变它是一种偏碱性的胰蛋白酶抑制剂的性质,突变前后均保持了耐碱性的特点。

关键词: 苦荞麦胰蛋白酶抑制剂抑制活性定点突变表达    
Abstract:

Objective:In order to study the active sites of trypsin inhibitor and reveal the relationship between structure and function. Methods:The FtTI gene from tartary buckwheat was mutated by site-directed mutagenesis technology and final three mutant strains R65L,D67V,R65L/D67V were obtained. The expression products were isolated, purified and the inhibition activity measured. The mutants R65L, D67V, R65L/D67V were induced for 5 h by IPTG, inhibition molar ratios are respectively 1:1, 1:1.15, 1:1.3 and 1:1.2. The inhibition constants (Ki) are respectively 1.62nM,1.69 nM,1.9 Nm and 1.8 nM (BApNA as substrate). Results:The SDS-PAGE analyses of expression products showed that premutation and after mutation of trypsin inhibitor have the same molecular weight as 9.5 kDa. The optimum temperature of mutants' aFtTI-R65L, aFtTI-D67V and aFtTI-R65L/D67V is still 40℃. The thermal stability results showed that all three mutants have high heat resistance. After 10~80℃ for 30 min, aFtTI trypsin inhibitory activity remains more than 80%. After 90℃ for 30 min, the aFtTI inhibitory activity begin to decreased significantly and only reserved it's inhibitory activity about 39%. Thus, aFTtI has high heat resistance. aFtTI inhibitory activity could retain about 90%, after placed different buffer solutions (pH 3.0~10.0) for 30 minutes. Under pH 2.0 conditions, the inhibitory activity of aFtTI loses about 31%. Under pH 11.0 conditions, the aFtTI inhibitory activity loses about 43%. Conclusions:The experiment showed that site-directed mutagenesis of FtTI did not change the alkaline property and maintained the resistance alkali characteristics with or without mutations.

Key words: Trypsin inhibitor    Expression    Tartary buckwheat    Site-directed mutagenesis    Inhibitory activity
收稿日期: 2015-07-20 出版日期: 2015-12-22
ZTFLH:  Q754  
基金资助:

四川省科技厅国际合作项目(2010hh0040)资助项目

通讯作者: 陈惠     E-mail: chen62hui@aliyu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
阮景军
杨毅
唐自钟
陈惠

引用本文:

阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.

RUAN Jing-jun, YANG Yi, TANG Zi-zhong, CHEN Hui. Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis. China Biotechnology, 2015, 35(12): 30-36.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151205        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I12/30

[1] Zhang Y, Chen S, Xu M, et al. Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. Appl Environ Microb, 2010, 76(20):6870-6876.
[2] Ruan J, Yan J, Hou S, et al. Expression and purification of the trypsin inhibitor from tartary buckwheat in Pichia pastoris and its novel toxic effect on Mamestra brassicae larvae. Mol Biol Rep, 2015, 42:209-216.
[4] Zeng X C, Liu Y, Shi W, et al. Genome-wide search and comparative genomic analysis of the trypsin inhibitor-like cysteine-rich domain-containing peptides. Peptides, 2014, 53:106-114.
[5] Ruan J J, Chen H, Shao J R, et al. An antifungal peptide from Fagopyrum tataricum seeds. Peptides, 2011, 32(6):1151-1158.
[6] Oddepally R, Sriram G, Guruprasad L. Purification and characterization of a stable Kunitz trypsin inhibitor from Trigonella foenum-graecum (fenugreek) seeds. Phytochemistry, 2013, 96:26-36.
[7] Mukherjee A K, Mackessy S P, Dutta S. Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int J Biol Macromol, 2014, 67:154-162.
[8] Cruz A C, Massena F S, Migliolo L, et al. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiol Bioch, 2013, 70:61-68.
[9] Guimarães L C, de Oliveira C F R, Marangoni S, et al. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth. Pestic Biochem Phys, 2015, 118:1-9.
[10] Jamal F, Pandey P K, Singh D, et al. A Kunitz-type serine protease inhibitor from Butea monosperma seed and its influence on developmental physiology of Helicoverpa armigera. Process Biochem, 2015, 50:311-316.
[11] Xie Z W, Luo M J, Xu W F, et al. Two reactive site locations and structure-function study of the arrowhead proteinase inhibitors, A and B, using mutagenesis. Biochemistry, 1997, 36(19):5846-5852.
[12] Qi R F, Song Z W, Chi C W. Structural features and molecular evolution of bowman-birk protease inhibitors and their potential application. Acta Bioch Bioph Sin, 2005, 37(5):283-292.
[13] 张继明,杨春,何永林,等.结核分枝杆菌Zmp1基因原核表达载体的构建及表达鉴定.细胞与分子免疫学杂志,2014, 6:573-575. Zhang J M, Yang C, He Y L, et al. Construction and identification of a prokaryotic expression vector for Zmpl gene from Mycobacterium tuberculosis. Chin J Cell Mol Immuno1, 2014, 6:573-575.
[14] Orašem P, Štajner N, Bohanec B. Effect of X-ray irradiation on olive shoot culture evaluated by morphological measurements, nuclear DNA content and SSR and AFLP markers. Trees, 2013, 27(6):1587-1595.
[15] 田欣,李晨,李玉英,等.野生型和突变型荞麦蛋白酶抑制剂的活性比较及抗肿瘤功能分析.生物化学与生物物理进展,2010, 6:654-661. Tian X, Li C, Li Y Y, et al. Analysis of inhibitory activity and antineoplastic effect of wild type rBTI and its mutants. Prog Biochem Biophys, 2010, 6:654-661.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[3] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[6] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[7] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[8] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[9] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[10] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[13] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[14] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[15] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.