Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 24-32    DOI: 10.13523/j.cb.20180504
研究报告     
人类线粒体肌酸激酶uMtCK的底物结合位点分析 *
孟浩毅1,李丹阳3,孙正阳1,杨兆勇3,张志斐2,***(),袁丽杰1,***()
1 华北理工大学基础医学院 河北省慢性疾病重点实验室 唐山市慢性病临床基础研究重点实验室 唐山 063000
2 华北理工大学药学院 唐山 063000
3 中国医学科学院医药生物技术研究所 北京 100050
Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens
Hao-yi MENG1,Dan-yang LI3,Zheng-yang SUN1,Zhao-yong YANG3,Zhi-fei ZHANG2,***(),Li-jie YUAN1,***()
1 Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases,School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210,China
2 School of Pharmacy, North China University of Science and Technology, Tangshan 063210,China
3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China
 全文: PDF(1989 KB)   HTML
摘要:

研究人类线粒体肌酸激酶uMtCK的结合位点,将其与底物肌酸和ATP结合有关的关键氨基酸进行突变,并对突变体进行酶动力学和圆二色谱数据分析,探讨这些关键氨基酸在底物识别和催化过程中的作用。结果显示,与野生酶相比,突变体Q313A和R336A的 K m Cr 分别提高了2.6和2.9倍,kcat下降了19%和55%;同样地,与ATP结合相关的突变体R125A和R287A分别使得 K m ATP 升高了3.2和4.2,kcat下降了72%和38%。以上结果表明突变体R125A、R287A、Q313A和R336A影响对底物的结合,同时也降低了酶促反应的速度。利用圆二色谱比较野生酶与不同突变体的二级结构并无明显变化,但进一步的结构模拟表明底物结合位点氨基酸在与底物之间的氢键对底物的识别和酶催化过程中发挥着重要作用。

关键词: 肌酸激酶定点突变酶动力学结构模拟    
Abstract:

To investigate the function of the key residues in the binding site of human uMtCK onto substrate creatine (Cr) and ATP, nine mutants of human uMtCK were constructed by using site-directed mutagenesis and analyzed by enzyme kinetics, circular dichroism spectra and protein structural simulation. The K m Cr value of Q313A and R336A and K m ATP values of R125A and R287A were 2.6, 2.9, 3.2 and 4.2 folds higher than that of the wild-type (WT), and the kcat values of Q313A, R125A, R287A and R336A 19%, 55%, 72% and 38% lower than that of WT, respectively. Meanwhile, no significant changes of circular dichroism spectra of the mutants were observed compared with WT. The structure model analysis indicated that the mutations altered the hydrogen bonds between the key amino acid residues and substrates, thus creating an unfavorable local environment for substrate binding and catalysis, as reflected by the increased Km and decreased kcat of mutants, consequently inactivation of human uMtCK.

Key words: Creatine kinase    Site-directed mutagenesis    Enzyme kinetics    Structural simulation
收稿日期: 2017-12-17 出版日期: 2018-06-05
ZTFLH:  Q55  
基金资助: * 河北省自然科学基金(C2014209137);中国医学科学院医学与健康科技创新工程资助项目(2016-I2M-3-022);中国医学科学院医学与健康科技创新工程资助项目(2016-I2M-3-012)
通讯作者: 张志斐,袁丽杰     E-mail: zhifeiz@outlook.com;yuanlijie1970@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孟浩毅
李丹阳
孙正阳
杨兆勇
张志斐
袁丽杰

引用本文:

孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.

Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens. China Biotechnology, 2018, 38(5): 24-32.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180504        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/24

图1  uMtCK三维结构
引物名称 引物序列 (5' → 3') 引物名称 引物序列 (5' → 3')
ck-R125A-F GTCCTGAGCTCTGCCGTGCGTACCG ck-Q313A-F CCTGCGCCTGGCCAAGCGTGGTAC
ck-R125A-R CGGTACGCACGGCAGAGCTCAGGAC ck-Q313A-R GTACCACGCTTGGCCAGGCGCAGG
ck-R127A-F GCTCTCGCGTGGCTACCGGTCGTAG ck-R315A-F GCCTGCAAAAGGCAGGTACCGGCGG
ck-R127A-R CTACGACCGGTAGCCACGCGAGAGC ck-R315A-R CCGCCGGTACCTGCCTTTTGCAGGC
ck-E227A-F CTGGGTGAACGAAGCAGATCACACC ck-V320A-F GGTACCGGCGGTGCCGACACCGCAG
ck-E227A-R GGTGTGATCTGCTTCGTTCACCCAG ck-V320A-R CTGCGGTGTCGGCACCGCCGGTACC
ck-R231A-F GAAGATCACACCGCCGTTATCTCC ck-D330A-F CGGTGTGTTCGCCATCAGTAACCTG
ck-R231A-R GGAGATAACGGCGGTGTGATCTTC ck-D330A-R CAGGTTACTGATGGCGAACACACCG
ck-R287A-F TACGGGTCTGGCTGCAGGTGTGC ck-R336A-F GTAACCTGGACGCACTGGGCAAATC
ck-R287A-R GCACACCTGCAGCCAGACCCGTA ck-R336A-R GATTTGCCCAGTGCGTCCAGGTTAC
表1  定点突变设计的引物
图2  CK的同源序列比对
图3  uMtCK及其突变体的表达与纯化
图4  uMtCK及其突变体的最适温度和pH
KmCr(mmol/L) KmATP(mmol/L) kcat(/s)
uMtCK 11.2±0.5 1.4±0.2 47±1.7
R125A 16.2±0.9 4.5±0.4 13±0.9
R287A 13.7±1.5 5.9±1.2 29±2.2
Q313A 29.4±0.7 1.5±0.5 38±3.1
R336A 32.4±2.1 3.7±0.2 21±1.8
表2  uMtCK及突变体催化动力学常数
WT R125A R127A E227A R231A R287A Q313A R315A V320A D330A R336A
Helix 25.1% 22.1% 23.7% 22.3% 24.9% 24.6% 25.2% 27.1% 21.3% 25.1% 23.0%
Antiparallel 12.2% 17.3% 15.0% 17.2% 13.0% 14.0% 12.7% 10.7% 19.0% 12.2% 15.4%
Parallel 6.5% 6.2% 6.4% 6.2% 6.6% 6.5% 6.5% 6.7% 6.0% 6.5% 6.2%
Beta-turn 16.4% 17.3% 16.8% 17.2% 16.4% 16.7% 16.4% 16.0% 17.7% 16.4% 17.1%
Rndm coil 36.6% 36.8% 37.4% 37.2% 37.5% 36.7% 36.8% 36.6% 35.9% 36.6% 36.3%
表3  uMtCK及其突变体二级结构的含量
图5  uMtCK及其突变体的CD光谱
图6  uMtCK的肌酸和ATP底物结合腔
图7  uMtCK及其突变体的三维结构分析
[1] Adams J E, Abendschein D R, Jaffe A S . Biochemical markers of myocardial injury. is MB creatine kinase the choice for the 1990s. Circulation, 1993,88(2):750-763.
doi: 10.1161/01.CIR.88.2.750
[2] Pepys M B, Hawkins P N, Booth D R , et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 1993,362(6420):553.
doi: 10.1038/362553a0
[3] Thomas P J, Qu B H, Pedersen P L . Defective protein folding as a basis of human disease. Trends in Biochemical Sciences, 1995,20(11):456-459.
doi: 10.1016/S0968-0004(00)89100-8 pmid: 8578588
[4] Blacklow S C, Kim P S . Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nature Structural & Molecular Biology, 1996,3(9):758-762.
doi: 10.1038/nsb0996-758 pmid: 8784348
[5] Wallimann T, Wyss M, Brdiczka D , et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 1992,281(Pt 1):21.
[6] Armbruster D A . The genesis and clinical significance of creatine kinase isoforms. Laboratory Medicine, 1991,22(5):325-334.
doi: 10.1093/labmed/22.5.325
[7] Jacobus W E, Moreadith R W, Vandegaer K M . Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes. Annals of the New York Academy of Sciences, 1983,414(1):73-89.
doi: 10.1111/j.1749-6632.1983.tb31676.x pmid: 6584077
[8] Amamoto R, Uchiumi T, Yagi M , et al. The expression of ubiquitous mitochondrial creatine kinase is downregulated as prostate cancer progression. Journal of Cancer, 2016,7(1):50.
doi: 10.7150/jca.13207 pmid: 4679381
[9] Qian X L, Li Y Q, Gu F , et al. Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. Biochemical and Biophysical Research Communications, 2012,427(1):60-66.
doi: 10.1016/j.bbrc.2012.08.147
[10] Mühlebach S M, Gross M, Wirz T , et al. Sequence homology and structure predictions of the creatine kinase isoenzymes. Molecular and Cellular Biochemistry, 1994,133(1):245-262.
doi: 10.1007/BF01267958 pmid: 7808457
[11] Eder M, Fritz-Wolf K, Kabsch W , et al. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins: Structure, Function, and Bioinformatics, 2000,39(3):216-225.
[12] Rao J K M, Bujacz G, Wlodawer A . Crystal structure of rabbit muscle creatine kinase. FEBS Letters, 1998,439(1):133-137.
doi: 10.1016/S0014-5793(98)01355-6
[13] Fritz-Wolf K, Schnyder T, Wallimann T , et al. Structure of mitochondrial creatine kinase L. Nature, 1996,381(6580):341.
doi: 10.1038/381341a0
[14] Eder M, Schlattner U, Wallimann T , et al. Crystal structure of brain-type creatine kinase at 1.41Å resolution. Protein Science, 1999,8(11):2258-2269.
[15] Tisi D, Bax B, Loew A . The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallographica Section D: Biological Crystallography, 2001,57(2):187-193.
doi: 10.1107/S0907444900015614 pmid: 11173463
[16] Bush D J, Kirillova O, Clark S A , et al. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. Journal of Biological Chemistry, 2011,286(11):9338-9350.
doi: 10.1074/jbc.M110.202796
[17] Azzi A, Clark S A, Ellington W R , et al. The role of phosphagen specificity loops in arginine kinase. Protein Science, 2004,13(3):575-585.
doi: 10.1110/ps.03428304 pmid: 2286741
[18] Bong S M, Moon J H, Nam K H , et al. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg 2+-NO3--creatine transition-state analogue complex . FEBS Letters, 2008,582(28):3959-3965.
doi: 10.1016/j.febslet.2008.10.039
[19] Lahiri S D, Wang P F, Babbitt P C , et al. The 2.1Å structure of Torpedo californica creatine kinase complexed with the ADP-Mg 2+-NO3--creatine transition-state analogue complex . Biochemistry, 2002,41(47):13861-13867.
doi: 10.1021/bi026655p
[20] Ohren J F, Kundracik M L, Borders C L , et al. Structural asymmetry and intersubunit communication in muscle creatine kinase. Acta Crystallographica Section D: Biological Crystallography, 2007,63(3):381-389.
doi: 10.1107/S0907444906056204 pmid: 17327675
[21] Borders C L , MacGregor K M, Edmiston P L, et al. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Protein Science, 2003,12(3):532-537.
doi: 10.1110/ps.0230403 pmid: 12592023
[22] McLeish M J, Kenyon G L . Relating structure to mechanism in creatine kinase. Critical Reviews in Biochemistry and Molecular Biology, 2005,40(1):1-20.
doi: 10.1080/10409230590918577 pmid: 15804623
[23] Ponticos M, Lu Q L, Morgan J E , et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. The EMBO Journal, 1998,17(6):1688-1699.
doi: 10.1093/emboj/17.6.1688
[24] Cantwell J S, Novak W R, Wang P F , et al. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism. Biochemistry, 2001,40(10):3056-3061.
doi: 10.1021/bi0020980 pmid: 11258919
[25] Barbour R L, Ribaudo J, Chan S H . Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. Journal of Biological Chemistry, 1984,259(13):8246-8251.
pmid: 6330105
[26] Cook P F, Kenyon G L, Cleland W W . Use of pH studies to elucidate the catalytic mechanism of rabbit muscle creatine kinase. Biochemistry, 1981,20(5):1204-1210.
doi: 10.1021/bi00508a023 pmid: 7013788
[27] Edmiston P L, Schavolt K L, Kersteen E A , et al. Creatine kinase: a role for arginine-95 in creatine binding and active site organization. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001,1546(2):291-298.
doi: 10.1016/S0167-4838(01)00159-5 pmid: 11295435
[28] Milner-White E J, Watts D C . Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochemical Journal, 1971,122(5):727-740.
doi: 10.1042/bj1220727 pmid: 5129268
[29] Li Q J, Fan S, Li X Y , et al. Insights into the phosphoryl transfer mechanism of human ubiquitous mitochondrial creatine kinase. Scientific Reports, 2016,6:38088.
doi: 10.1038/srep38088 pmid: 27909311
[30] Ho S N, Hunt H D, Horton R M , et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989,77(1):51-59.
doi: 10.1016/0378-1119(89)90358-2 pmid: 2744487
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[5] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[6] 陈蓉, 杨帆, 成细瑶, 苏正定. 模拟α-螺旋多肽类似物抑制剂设计的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 89-97.
[7] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[8] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[9] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[10] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[11] 李鹏鹏, 于浩, 许平, 唐鸿志. 6-羟基-3-琥珀酰吡啶单加氧酶HspB的结构研究[J]. 中国生物工程杂志, 2015, 35(8): 68-75.
[12] 李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.
[13] 高瑞平, 程隆斌, 李振秋. 一种简便快速的单引物PCR定点突变方法[J]. 中国生物工程杂志, 2015, 35(5): 61-65.
[14] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[15] 阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.