Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (2): 105-110    DOI: 10.13523/j.cb.20150216
综述     
环糊精葡萄糖基转移酶的基因改造与高效表达
夏亚穆, 李晨晨
青岛科技大学 化工学院 青岛 266042
Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase
XIA Ya-mu, LI Chen-chen
Qing Dao University of Science and Technology, Qingdao 266042, China
 全文: PDF(405 KB)   HTML
摘要:

环糊精葡萄糖基转移酶(CGTase,EC 2.4.1.19)是一种多功能酶,主要用于生产环糊精(CD)、糖基化碳水化合物,同时在食品行业也有重要作用。为改善CGTase在这些方面的应用性能,筛选出优势突变酶,异源表达、定点突变、固定化等技术被研究和应用,取得了实质性的进展。综述了CGTase基因高效异源表达策略,概述了基因改造CGTase的研究进展,并且还总结了用于改造CGTase的其他手段,例如固定化酶、嵌合酶、化学添加剂等,以期为在相关CGTase研究领域开展研究提供参考。

关键词: 环糊精葡萄糖基转移酶环糊精异源表达定点突变分子工程    
Abstract:

Cyclodextrin glycosyltransferase(CGTase,EC 2.4.1.19) is an important enzyme with multiple functions, particularly the production of cyclodextrins (CD) and carbohydrate glycosylation. It is also applied in food industry. To modify the molecular structure of CGTase for improved performance in industrial applications, heterologous expression, site-directed mutagenesis and immobilization technology of cyclodextrin glycosyltransferase gene have been applied. Moreover, in recent years substantial progress has been made. In order to provide the reference in the related CGTase research, the heterologous expression strategies, the molecular engineering approaches, other technologies such as immobilized enzyme etc. were systematically summarized and discussed.

Key words: Cyclodextrin glucanotransferase    Cyclodextrin    Heterologous expression    Site-directed mutagenesis    Molecular engineering
收稿日期: 2014-11-04 出版日期: 2015-02-25
ZTFLH:  Q789  
通讯作者: 李晨晨     E-mail: 523530756@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.

XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase. China Biotechnology, 2015, 35(2): 105-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150216        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I2/105


[1] Bart A, van der Veen, Gert-Jan W M, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus ciculans (strain 251) proceed via different kinetic mechanisms.European Journal of Biochemistry, 2000, 267(3):658-665.

[2] Ruizhi Han, Jianghua Li, Hyun-dong Shin, et al. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnology Advances, 2014, 32(2):415-428.

[3] Biwer G, Antranikian G, Heinzle E. Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol, 2002, (59):609-617.

[4] Lee S H, Kim Y W, Lee S Y, et al. Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its application as an antistaling enzyme. J Agric Food Chem, 2002, 50:1411-1415.

[5] Go Y H, Kim T K, Lee K W, et al. Functional characteristics of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-31 highly specific for intermolecular transglycosylation of bioflavonoids. Microbiol Biotechnol, 2007, 17:1550-1553.

[6] Atanasova N, Petrova P, Ivanova V, et al. Isolation of novel alkaliphilic Bacillus strains for cyclodextrin glucanotransferase production. Appl Biochem Biotechnol, 2008, 149:155-167.

[7] Kitayska T, Petrova P, Ivanova V, et al. Purification and properties of a new thermostable cyclodextrin glucanotransferase from Bacillus pseudalcaliphilus 8SB. Appl Biochem Biotechnol, 2011, 165:1285-1295.

[8] Jemli S, Ben Messaoud E, Ayadi-Zouari D, et al. A β-cyclodextrin glycosyltransferase from a newly isolated Paenibacillus pabuli US132 strain: Purification, properties and potential use in bread-making. Biochemical Engineering Journal, 2007, 34:44-50.

[9] 孙涛,江波,潘蓓蕾.环糊精葡萄糖基转移酶的生产及其在食品工业中的应用. 食品工业科技, 2012, 33(16):387-393. Sun T, Jiang B, Pan B L. Production of cyclodextrin glucanotransferases and their applications in food industry. Science and Technology of Food Industry, 2012, 33(16): 387-393.

[10] Li Z, et al. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Carbohydr. Polym., 2014, 108, 112-117.

[11] 谢婷,岳洋,宋炳红,等.α-环糊精糖基转移酶活性区域突变提高选择形成γ-环糊精能力.生物工程学报,2013,29(9):1234-1244. Xie T, Yue Y, Song B H, et al. Increasing of product specificity of γ-cyclodextrin by mutating the active domain of α-cyclodextrin glucanotransferase from Paenibacillus macerans sp.602-1. Chinese Journal of Biotechnology, 2013, 29(9): 1234-1244.

[12] Yamamoto I, Muto N, Murakami K, et al. Collagen synthesis in human skin fibroblasts is stimulated by a stable form of ascorbate 2-O-alpha-D-glucopyranosyl-L-ascorbic acid. Nutrition, 1992, 122(4): 871-877.

[13] 许乔艳,韩瑞枝,李江华,等.亚位点+1处突变提高软化类芽胞杆菌环糊精糖基转移酶底物麦芽糊精特异性.生物工程学报,2014,30(1):98-108. Xu Q Y, Han R Z, Li J H, et al. Improving maltodextrin specificity by site-saturation engineering of subsite +1 in cyclodextrin glycosyltransferase from Paenibacillus macerans. Chinese Journal of Biotechnology, 2014, 30(1): 98-108.

[14] Van der Veen B A, Leemhuis H, Kralj S, et al.Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyl transferase. Biol Chem, 2001, 276:44557-44562.

[15] Leemhuis H, Rozeboom H J, Wilbrink M, et al. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: The role of alanine 230 in acceptor subsite +1. Biochemistry, 2003, 42: 7518-7526.

[16] 吴敬, 吴丹, 郑贤良. 不同宿主来源的α-环糊精葡萄糖基转移酶分离纯化及化学修饰提高其热稳定性. 食品与生物技术学报, 2013, 32(3):287-292. W J, W D, Zheng X L. Purification of α-cyclodextrin glycosyltransferase and study of thermal stability improvement by chemical modification. Journal of Food Science and Biotechnology, 2013, 32(3): 287-292.

[17] Leemhuis H, Rozeboom H, Dijkstra B. Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a saltbridge. Protein, 2004, 54(1):128-134.

[18] Li C, Huang M, Gu Z, et al. Nanosilica Sol leads to further increase in polyethylene glycol (PEG) 1000-enhanced thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans. Agricultural and Food Chemistry, 2014, 62: 2919-2924.

[19] Wang Z, Qi Q, Wang PG. Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiaefor improved cyclodextrin production. Appl Environ Microbiol, 2006, 72:1873-1877.

[20] Ayadi D Z, Kammoun R, Jemli S, et al. Excretory overexpression of Paenibacillus pabuli US132 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: gene cloning and optimization of the culture conditions using experimental design. Biologia, 2011, 66:945-953.

[21] Liu H, Li J, Du G, et al. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coliby systematic codon usage optimization. Ind Microbiol Biotechnol, 2012, 39:1841-1849.

[22] Jeang C L, Lin D G, Hsieh S H. Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli. Journal of Agricultural and Food Chemistry, 2005, 53(16):6301-6304.

[23] Charoensakdi R, Murakami S, Aoki K, Rimphanitchayakit V, Limpaseni T. Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand. Biochem Mol Biol, 2007, 40:333-340.

[24] Wang L, Wu D, Chen J, et al. Enhanced production of γ-cyclodextrin by optimization of reaction of γ-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase. Food Chemistry, 2013, 141:3072-3076.

[25] Ng H S, Ooi C W, Mokhtar M N, et al. Extractive bioconversion of cyclodextrins by Bacillus cereus cyclodextrin glycosyltransferase in aqueous two-phase system. Bioresour Technol,2013, 142:723-726.

[26] 张智维,雷新辉,张海群. 紫外线和亚硝酸诱变选育高产α-环糊精葡萄糖基转移酶菌株. 粮油食品科技,2013, 21(5): 101-104. Zhang Z W, Lei X H, Zhang H Q. Breeding of high yield α-cyclodextrin glycosyltransferase strains by UV and nitrite mutagenesis. Science and Technology of Cereals, Oils and Foods, 2013, 21(5): 101-104.

[27] Kelly R M, Leemhuis H, Rozeboom H J, et al.Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J, 2008,413:517-525.

[28] Han R, Li J, Shin H D, et al. Carbohydrate-binding module-cyclodextrin glycosyltransferase fusion enables efficient synthesis of 2-o-d-glucopyranosyl-L-ascorbic acid with soluble starch as the glycosyl donor. Appl Environ Microbiol, 2013, 79:3234-3240.

[29] Kaulpiboon J, Pongsawasdi P, Zimmermann W. Molecular imprinting of cyclodextrin glycosyltransferases from Paenibacillus sp. A11 and Bacillus macerans with γ-cyclodextrin. FEBS, 2007, 274:1001-1010.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[5] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[6] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[7] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[8] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[9] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[10] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[11] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[12] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[13] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[14] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[15] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.