Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 79-87    DOI: 10.13523/j.cb.1907049
技术与方法     
Myxococcus sp.V11海藻糖合酶TreS II分子改造 *
赵晓艳1,陈允妲1,章雅倩1,吴晓玉1,2,王飞1,2,**(),陈金印2
1 江西农业大学生物科学与工程学院 南昌 330045
2 江西省果蔬保鲜与质量安全创新中心 南昌 330045
Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11
ZHAO Xiao-yan1,CHEN Yun-da1,ZHANG Ya-qian1,WU Xiao-yu1,2,WANG Fei1,2,**(),CHEN Jin-yin2
1 College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang 330045, China
2 Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
 全文: PDF(1336 KB)   HTML
摘要:

来源于黏细菌Myxococcus sp.V11的海藻糖合酶(trehalose synthase, EC 2.4.1.245)TreS II可通过转糖苷作用将麦芽糖转化成为海藻糖,在酶法生产海藻糖上显示出一定的应用潜力,但TreS II对热敏感,在60℃保温3h,酶活性丧失,限制了其应用范围.目的:拟探索TreS II影响热稳定性的氨基酸残基构成,通过对可能的氨基酸位点进行定点突变,以期获得耐热性的突变子,扩大TreS II应用范围.方法: 通过PCR介导的方法对TreS II可能影响到热稳定性的氨基酸Q3,A283,W374,R449和Y537进行定点突变,以野生型重组酶为对照,比较突变型与野生型的最适反应温度和最适反应pH,通过测定不同温度下保存不同时间后的残留酶活,检测突变子的耐热效果.结果: 研究表明突变子Q3D,A283R,W374D,R449Q和Y537H的比酶活与野生型无显著差异,且最适pH 和最适反应温度也未发生改变;A283R,Y537H在60℃条件下,3h后活性剩余68%;Q3D,W374D,R449Q在温度60℃时,3h后活性剩余35%.结论: TreS II分子结构中与金属离子结合的几个氨基酸残基的改变对蛋白质分子的耐热性具有显著影响.

关键词: Myxococcussp.V11海藻糖合酶定点突变热稳定性    
Abstract:

The trehalose synthase (EC 2.4.1.245) from Myxococcus sp.V11 (TreS II) catalyzes the reversible interconversion of maltose and trehalose. The high catalytic activity and high conversion rate of maltose into trehalose of TreS II indicate that it has potential application in industrial production of trehalose. However, the thermal instability of TreS II limits its wide application in trehalose production. Objective:The effects of amino acid residues mutations on the thermal stability, optima of pH and temperature, and specific activity of TreS II were studied by site-directed mutagenesis. Methods: Site-directed mutation experiment of the two possible metal ion-binding sites (A283 and Y537) and the three sites (Q3, W374 and R449) in two regions which may correlate with thermostability by using overlapping PCR were performed. Mutants of A283R, Y537H, Q3D, W374D and R449Q were heterogeneous expressed in E.coli BL21(DE3). At the same time the specific activity, the optimum reaction temperature, the optimum pH and the thermal stability of mutants were compared with wild-type strain. Results: Mutation of Q3D, W374D, R449Q, A283R and Y537H enhanced the thermal stability, but did not affect the pH and temperature optima. Only the mutant R449Q reduced the specific activity. The modified enzymes A283R and Y537H showed 68% and the mutants Q3D, R449Q, W374D showed 35% of maximal activity after incubating in maltose substrate for 3h at 60℃ compared to only 20% activity for wild-type enzyme. Conclusion: These factors may render TreS II relatively more thermostable among mesophilic trehalose synthases. The thermophilic amino acid residues provided herein may provide guidance for further protein engineering in the design of stabilized enzymes.

Key words: Myxococcus sp.V11    Trehalose synthase    Site-directed mutagenesis    Thermostability
收稿日期: 2019-07-27 出版日期: 2020-04-18
ZTFLH:  Q814  
基金资助: * 国家自然科学基金地区科学项目(31560031);江西省自然科学基金(20161BAB204178);江西省教育厅科学技术研究项目(GJJ160387)
通讯作者: 王飞     E-mail: wangfei179@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵晓艳
陈允妲
章雅倩
吴晓玉
王飞
陈金印

引用本文:

赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.

ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11. China Biotechnology, 2020, 40(3): 79-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1907049        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/79

TreS II gene allele Mutagenic primer sets
Q3D-F ACGGATTGAATGATTGATGACCTCT
Q3D-R CTAAATCATTCAATCCGTGGCGGG
A283R-F CTGGTGACGGAGGACCGTACGCCGCTCG
A283R-R ACGGTCCTCCGTCACCAGCGACAGGAAG
W374D-F GGGACGCCGGTGCTCTATTACGGCGACG
W374D-R ATAGAGCACCGGCGTCCCCGGCAGCGAC
R449Q-F ATGGAGCGCATGGTGCAGATGGCAAGGA
R449Q-R CTGCACCATGCGCTCCATCCAGTTGAGC
Y537H-F TACGGTTACCGGTGGCACCGGATGGAGC
Y537H-R GTGCCACCGGTAACCGTACCCCTCCAGC
表1  TreS II 定点突变PCR扩增所用引物
图1  TreS II 和已知海藻糖合酶氨基酸序列的比较
图2  PCR介导定点突变tresII
图3  突变重组酶TreS II SDS-PAGE图谱
图4  突变型TreS II最适反应温度
图5  突变型TreS II最适反应pH
图6  突变型TreS II与野生型比酶活的比较
图7  突变型TreS II与野生型热稳定性比较
[1] Nwaka S, Holzer H . Molecular Biology of Trehalose and the Trehalases in the Yeast Saccharomyces cerevisiae. Progress in Nucleic Acid Research, 1997,58:197-237.
[2] Elbein A D, Pan Y T, Irena P , et al. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003,13(4):17R.
[3] Elbein A D . The metabolism of α,α-trehalose. Adv Carbohyd Chem Biochem, 1974,30(8):227-256.
[4] Shimakata T, Minatogawa Y . Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Archives of Biochemistry Biophysics, 2000,380(2):331-338.
[5] Liu J, Nikaido H . A mutant of Mycobacterium smegmatis defective in the biosynthesis of ycolic acids accumulates meromycolates. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(7):4011-4016.
[6] Brodmann D, Schuller A, Ludwigmüller J , et al. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact, 2002,15(7):693-700.
[7] Rolland F, Baena Gonzalez E . Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 2006,57(1):675-709.
[8] Hottiger T, Virgilio C D, Hall M N , et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Febs Journal, 2005,219(1‐2):187-193.
[9] Hounsa C G, Brandt E V, Thevelein J , et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 1998,144(3):671-680.
[10] 刘俊梅, 聂海彦, 郑微微 , 等. 水生栖热菌FL-03海藻糖合酶基因的克隆及真核表达. 食品科学, 2010,31(23):267-270.
Liu J M, Nie H Y, Zheng W W , et al. Cloning and eukaryotic expression of trehalose synthase gene from Thermus aquaticus FL-03. Food Science, 2010,31(23):267-270.
[11] Richards A B, Krakowka S, Dexter L B , et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chemical Toxicology, 2002,40(7):871-898.
[12] 李忠奎 . 海藻糖合酶基因在毕赤酵母中的克隆和表达. 济南: 齐鲁工业大学, 2014.
Li Z K . Cloning and expression of trehalose synthase gene in Pichia pastoris. Jinan: Qilu University of Technology, 2014.
[13] Cai X, Seitl I, Mu W , et al. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Applied Microbiology Biotechnology, 2018,102(12):1-12.
[14] Jelsbak L, Sogaard-Andersen L . Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. Journal of Microbiological Methods, 2003,55(3):829-839.
[15] Mcbride M J, Zusman D R . Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. Journal of Bacteriology, 1989,171(11):6383-6386.
[16] Shi C, Lu X, Ma C , et al. Enhancing the thermostability of a novel β-agarase AgaB through directed evolution. Applied Biochemistry Biotechnology, 2008,151(1):51.
[17] Zhang Y J, Xie M, Zhang X L , et al. Establishment of polyethylene-glycol-mediated protoplast transformation for Lecanicillium lecanii and development of virulence-enhanced strains against Aphis gossypii. Pest Management Science, 2016,72(10):1951-1958.
[18] 王飞, 李周坤, 周杰, 崔中利 . 定点突变对酰胺水解酶DamH可溶性表达和酶活的影响. 微生物学报, 2015,55(12):1584-1592.
Wang F , LiZ K, Zhou J,et al. Effect of site-directed mutagenesis on the soluble expression and specific activity of amide hydrolase DamH. Acta Microbiologica Sinica, 2015,55(12) : 1584-1592.
[19] Nelson N . A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 1944,153(2):471-473.
[20] Wei Y T, Zhu Q X, Luo Z F , et al. Cloning, Expression and identification of a new trehalose synthase gene from Thermobifida fusca Genome. Acta Biochimica Et Biophysica Sinica, 2004,36(7):477-484.
[21] Yuan T, Pan, Vineetha KE , et al. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Febs Journal, 2010,271(21):4259-4269.
[22] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976,72(1-2):248-254.
[23] Chou H H, Chang S W, Lee G C , et al, Shaw JF. Site-directed mutagenesis improves the thermostability of a recombinant Picrophilus torridus trehalose synthase and efficiency for the production of trehalose from sweet potato starch. Food Chemistry, 2010,119(3):1017-1022.
[24] Wang Y L, Sih-Yao C, Lin Y T , et al. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Acta Crystallographica, 2015,70(12):3144-3154.
[25] Wang J, Ren X, Wang R , et al. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. Journal of Agricultural Food Chemistry, 2017,65(35):7726-7735.
[26] Nishimoto T, Nakano M, Nakada T , et al. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Bioscience, Biotechnology, Biochemistry, 1996,60(4):640-644.
[27] Lee J H, Lee K H, Kim C G , et al. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Applied Microbiology Biotechnology, 2005,68(2):213-219.
[28] Chen Y S, Lee G C, Shaw J F . Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. Journal Of Agricultural Food Chemistry, 2006,54(19):7098-7104.
[29] Tsusaki K, Nishimoto T, Nakada T , et al. Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochimica et Biophysica Acta -General Subjects, 1997,1334(1):28-32.
[30] 王宇凡, 朱碉明, 魏东盛 , 等. 利用定点突变分析海藻糖合酶的功能. 微生物学通报, 2009,36(5):658-665.
Wang Y F, Zhu Y M, Wei D S , et al. Functional analysis of trehalose synthase in Meiothermus ruber CBS-01 by site-directed mutation. Microbiology China, 2009,36(5):658-665.
[31] Wang Y, Zhang J, Wang W , et al. Effects of the N-terminal and C-terminal domains of Meiothermus ruber CBS-01 trehalose synthase on thermostability and activity. Extremophiles Life Under Extreme Conditions, 2012,16(3):377-385.
[32] Goihberg E, Dym O, Telor S , et al. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins Structure Function Bioinformatics, 2010,66(1):196-204.
[33] Masayoshi S, Mika M, Keisuke N , et al. Role of proline residues in conferring thermostability on aqualysin I. Journal of Biochemistry, 2007,141(2):213-220.
[34] Caner S, Nguyen N, Aguda A , et al. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013,23(9):1075-1083.
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[5] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[6] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[7] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[8] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[9] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[10] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[11] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[12] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[13] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[14] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[15] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.