Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 76-81    
综述     
面向重要实质器官的生物制造技术
贺健康, 刘亚雄, 连芩, 王玲, 靳忠民, 李涤尘
西安交通大学机械制造系统工程国家重点实验室 西安 710049
Biofabrication of Vital Parenchymal Organs
HE Jian-kang, LIU Ya-xiong, LIAN Qin, WANG Ling, JIN Zhong-min, LI Di-chen
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(457 KB)   HTML
摘要: 在体外制造可修复人体受损组织与器官功能的活性替代物一直是人类的梦想。制造、材料与生命科学的交叉与融合发展,为生物组织与器官的体外制造提供了必要的技术、材料与生物学基础,从而实现了皮肤、骨、膀胱等简单活性组织的临床应用,但人体重要实质器官如肝脏、肺等的再造研究至今未取得突破性进展。重要实质器官内部复杂的微观结构系统及多细胞体系的构建是实现其体外制造的关键,也是当前生物组织与器官制造技术所面临的巨大挑战。从生物制造的角度,综述国内外在重要实质器官复杂微结构制造领域的主要技术方法及最新研究进展,通过分析与评价,对未来重要实质器官的生物制造技术发展进行展望。
关键词: 生物制造重要实质器官组织工程    
Abstract: It is a dream of human being to restore the biologicial functions of damaged tissues or organs by using in vitro engineered living substitutes. The development and integration of manufacutring, material and life sciences have provided necessary technical, material and biological foundations for the biofabrication of artificial tissues and organs. Several artificial tissues with relatively simple structures (e.g., skin, bone and bladder) were already commercially available or in clinical trials. However, it is still challenging to regenerate vital parenchymal organs like liver and lung. One of the crucial issues is to recapitulate the native complex microstructural and multicellular organizations in artificial analogs. From the perspective of biomanufacutring, the major techniques and latest progress related to the regeneration of vital parenchymal organs were reviewed, analyzed and discussed. The future trend for the biofabrication of vital parenchymal organs was summarized.
Key words: Biofabrication    Vital parenchymal organs    Tissue engineering
收稿日期: 2012-06-13 出版日期: 2012-09-25
ZTFLH:  Q813  
基金资助: 国家"863"计划(2009AA043801);中央高校基本科研业务费专项资金学科综合交叉项目(XJJ2011067)与新教师科研支持计划(XJTU-HRT-002)资助项目
通讯作者: 李涤尘     E-mail: dcli@mail.xjtu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘亚雄
连芩
王玲
靳忠民
李涤尘
贺健康

引用本文:

贺健康, 刘亚雄, 连芩, 王玲, 靳忠民, 李涤尘. 面向重要实质器官的生物制造技术[J]. 中国生物工程杂志, 2012, 32(09): 76-81.

HE Jian-kang, LIU Ya-xiong, LIAN Qin, WANG Ling, JIN Zhong-min, LI Di-chen. Biofabrication of Vital Parenchymal Organs. China Biotechnology, 2012, 32(09): 76-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/76

[1] Khademhosseini A, Vacanti J P, Langer R. Progress in tissue engineering. Scientific American, 2009, 300(5):64-71.
[2] Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110):920-926.
[3] Orlando G, Wood K J, Stratta R J, et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation, 2011,91(12):1310-1317.
[4] Ott H C, Matthiesen T S, Goh S K, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine, 2008, 14(2):213-221.
[5] Ott H C, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 2010, 16(8):927-933.
[6] Petersen T H, Calle E A, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science, 2010, 329(5991):538-541.
[7] Uygun B E, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 2010, 16(7):814-820.
[8] Baptista PM, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2): 604-617.
[9] 康玉占, 汪艳, 高毅. 去细胞化技术在全肝生物支架建立中的应用. 中华医学杂志, 2009, 89(16):1135-1138. Kang Y Z, Wang Y, Gao Y. Decellularization technology application in whole liver reconstruct biological scaffold.National Medical Journal of China, 2009, 89(16):1135-1138.
[10] 康玉占, 汪艳, 高毅. 脱细胞化肝脏生物衍生支架的制备及鉴定. 中国组织工程研究与临床康复, 2009, 13(8):1505-1508. Kang Y Z, Wang Y, Gao Y. Preparation and identification of hepatic decellularized bio-derived scaffold. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(8):1505-1508.
[11] Asakawa N, Shimizu T, Tsuda Y, et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 2010, 31(14):3903-3909.
[12] Ohashi K. Liver tissue engineering: The future of liver therapeutics. Hepatol Res 2008;38:S76-S87.
[13] Yang J, Yamato M, Sekine H, et al. Tissue engineering using laminar cellular assemblies. Advanced Materials, 2009, 21(32-33):3404-3409.
[14] Masuda S, Shimizu T, Yamato M, et al. Cell sheet engineering for heart tissue repair. Advanced Drug DeliveryReviews, 2008, 60(2):277-285.
[15] Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 2006, 12(4):459-465.
[16] Sekine H, Shimizu T, Yang J, et al. Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 2006, 114(Suppl):I87-93.
[17] Shimizu T, Yamato M, Kikuchi A, et al. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003, 24(13):2309-2316.
[18] Zakharova L, Mastroeni D, Mutlu N, et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 2010, 87(1):40-49.
[19] Ohashi K, Yokoyama T, Yamato M, et al. Engineering functional two-and three-dimensional liver systems in vivo using hepatic tissue sheets. Nature Medicine, 2007, 13(7):880-885.
[20] 陈涛, 王艳辉, 卜令学, 等. 应用细胞片层技术构建功能性组织工程骨的动物实验研究. 华西口腔医学杂志,2011,29(4):442-445. Chen T, Wang Y H, Bu L X, et al. An animal experiment of construction of functional tissue-engineered bone with cell sheet technology.West China Journal of Stomatology, 2011, 29(4): 442-445.
[21] Yang J, Yamato M, Kohno C, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials, 2005, 26(33):6415-6422.
[22] Kim S S, Utsunomiya H, Koski J A, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Annals of Surgery, 1998, 228(1):8-13.
[23] Huang H, Oizumi S, Kojima N, et al. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials, 2007, 28(26):3815-3823.
[24] He J, Li D, Liu Y, et al. Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomaterialia, 2009, 5(1):453-461.
[25] Mao M, He J, Liu Y, et al. Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta Biomaterialia, 2012, 8: 2175-2184.
[26] Mironov V. Toward human organ printing: Charleston Bioprinting Symposium. Asaio J, 2006, 52(6):e27-30.
[27] Mironov V, Boland T, Trusk T, et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21(4):157-161.
[28] Mironov V, Kasyanov V, Drake C, et al. Organ printing: promises and challenges. Regenerative Medicine, 2008, 3(1):93-103.
[29] Visconti R P, Kasyanov V, Gentile C, et al. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opinion on Biological Therapy, 2010, 10(3):409-420.
[30] Yan Y, Wang X, Pan Y, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials, 2005, 26(29):5864-5871.
[31] Engelmayr, Jr G C, Cheng M, Bettinger C J, et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 2008, 7(12):1003-1010.
[32] Bettinger C J, Weinberg E J, Kulig K M, et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Advanced Materials, 2005, 18(2):165-169.
[33] Hoganson D M, Pryor H I, Spool I D, et al. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Engineering, 2010, 16(5):1469-1477.
[34] Liu Tsang V, Chen A A, Cho L M, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular h·rogels. Faseb J, 2007, 21(3):790-801.
[35] Nahmias Y, Odde D J. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nature Protocols, 2006, 1(5):2288-2296.
[36] Chen A A, Thomas D K, Ong L L, et al. Humanized mice with ectopic artificial liver tissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29):11842-11847.
[37] Du Y, Ghodousi M, Qi H, et al. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnology and Bioengineering, 2011, 108(7):1693-1703.
[38] Du Y, Lo E, Ali S, et al. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28):9522-9527.
[39] Zhao Y, Xu Y, Zhang B, et al. In vivo generation of thick, vascularized hepatic tissue from collagen h·rogel-based hepatic units. Tissue Eng Part C Methods, 2010, 16(4):653-659.
[40] Huh D, Matthews B D, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986):1662-1668.
[41] Ho C T, Lin R Z, Chang W Y, et al. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 2006, 6(6):724-734.
[42] Weinberg E, Kaazempur-Mofrad M, Borenstein J. Concept and computational design for a bioartificial nephron-on-a-chip. The International Journal of Artificial Organs, 2008, 31(6):508-514.
[43] Grosberg A, Alford PW, McCain M L, et al. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab on a Chip, 2011, 11(24):4165-4173.
[44] Baker M. Tissue models: a living system on a chip. Nature, 2011, 471(7340):661-665.
[45] Zhang C, Zhao Z, Abdul Rahim N A, et al. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab on a Chip, 2009, 9(22):3185-3192.
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 吴晓燕,陈方,丁陈君,孙裕彤. 全球生物经济现状、趋势与融资前景分析*[J]. 中国生物工程杂志, 2021, 41(10): 116-126.
[3] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[4] 吴晓燕,陈方,丁陈君,郑颖,宋琪. 全球生物制造产业市场与融资现状分析*[J]. 中国生物工程杂志, 2020, 40(5): 117-124.
[5] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[6] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[7] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[8] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[9] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[10] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[11] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[12] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[13] 张登央, 张英, 张丽君, 王妍. 3D技术制备骨修复生物材料的功能和安全性评价[J]. 中国生物工程杂志, 2015, 35(7): 55-61.
[14] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[15] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.