Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 70-75    
技术与方法     
响应面法优化普通小球藻混合营养培养基组成生产生物质
杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允
西北师范大学生命科学学院 兰州 730070
Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology
YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun
College of Life Science, Northwest Normal University, Lanzhou 730070, China
 全文: PDF(774 KB)   HTML
摘要: 利用响应面法优化了混合营养培养普通小球藻生产生物质的培养基组成。首先采用Plackett-Burman设计对11个相关营养因素的效应进行了评价, 并筛选出影响小球藻细胞生长的3个主要因素为KNO3、葡萄糖和NaCl;然后结合Box-Behnken设计建立了以小球藻浓度为响应值的二次回归方程模型, 获得优化的培养基组成为KNO3 1.64g/L、葡萄糖45g/L、NaCl 1.57g/L;模型预测的最大浓度为5.28g/L, 验证值为5.68g/L;验证结果表明, 所建立模型预测精度较好, 可用于优化小球藻的混养培养基组成。优化条件下混养小球藻细胞的蛋白质和色素含量较优化前降低, 而可溶性糖和油脂含量提高, 脂肪酸以棕榈酸和油酸为主;细胞组分分析结果显示, 混养培养所得小球藻生物质具有作为生产微藻生物能源原料的潜力。
关键词: 普通小球藻响应面法混合营养培养基组成生物质    
Abstract: Response surface methodology was adopted to optimize the mixotrophic culture medium composition for biomass production. In the first optimization step, KNO3, glucose and NaCl were screened from eleven related nutrients as the major factors influence the mixotrophic growth of Chlorella vulgaris significantly using Plackett-Burman design. Subsequently, quadratic regression equation model was established based on the Box-Behnken design, and the optimized nutrients contents were that KNO3 was 1.64g/L, glucose was 45g/L and NaCl was 1.57g/L. The predicted maximum biomass content of 5.28g/L was obtained from the model, and the actual validation value was 5.68g/L. The validation results indicated that the model can be used to optimize the mixotrophic culture medium of C. vulgaris for its high prediction accuracy. Under the optimum conditions, the biochemical composition of mixotrophic C. vulgaris displayed that the protein and total pigments content were reduced and the soluble carbohdyrate and lipid content were increased, compared with the un-optimized algal biomass. The major fatty acids of the alga lipid were oleic acid and palmitic acid. The results from biochemical composition analysis suggested that the mixotrophic biomass of C. vulgaris can be used as a potential feedstock for microalgae biofuel production.
Key words: Chlorella vulgaris    Response surface methodology    Mixotrophism    Culture medium composition    Biomass
收稿日期: 2012-03-07 出版日期: 2012-09-25
ZTFLH:  Q819  
通讯作者: 孔维宝     E-mail: kwbao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨琪
王科荣
孔维宝
杨红
曹海
张馨允

引用本文:

杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允. 响应面法优化普通小球藻混合营养培养基组成生产生物质[J]. 中国生物工程杂志, 2012, 32(09): 70-75.

YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology. China Biotechnology, 2012, 32(09): 70-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/70

[1] 夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展. 中国生物工程杂志, 2009, 29 (7): 118-126. Xia J L. Wan M X, Wang R M, et al. Current status and progress of microalgal biodiesel.China Biotechnology, 2009, 29 (7): 118-126.
[2] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 2010, 14 (2): 557-577.
[3] Borowitzka M A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 1999, 70 (1-3): 313-321.
[4] 郑洪立, 张齐, 马小琛, 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009, 29 (3): 110-116. Zheng H L, Zhang Q, Ma X C, et al. Research progress on bio-diesel-producing microalgal cultivation.China Biotechnology, 2009, 29 (3): 110-116.
[5] Andrade M R, Costa J A V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 2007, 264 (1-4): 130-134.
[6] 金传荫, 宋立荣, 黎尚豪. 鱼腥藻1017株的混合营养型生长. 水生生物学报, 1996, 20 (2): 134-137. Jin Z Y, Song L R, Li S H. The mixotrophic growth of Anabaena sp. HB1017.Acta Hydrobiologica Sinica, 1996, 20 (2): 134-137.
[7] 张义明, 陈峰, 郭祀远. 光照度及葡萄糖浓度对螺旋藻生长的影响. 华南理工大学学报, 1996, 24 (2): 145-150. Zhang Y M, Chen F, Guo S Y. The effects of light intensity and glucose concentration on growth of Spirulina platensis.Journal of South China University of Technology, 1996, 24 (2): 145-150.
[8] 刘娟妮, 胡萍, 姚领, 等. 微藻培养中光生物反应器的研究进展. 食品科学, 2006, 27 (12): 772-777. Liu J N, Hu P, Yao L, et al. Research progress of photobioreactor on microalgal cultivation. Food Science, 2006, 27 (12): 772-777.
[9] Heredia-Arroyo T, Wei W, Ruan R, et al. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy, 2011, 35 (5): 2245-2253.
[10] 郑洪立, 高振, 黄和, 等. 响应面法优化自养小球藻产生物柴油油脂. 中国生物工程杂志, 2010, 30 (8): 106-111. Zheng H L, Gang Z, Huang H, et al. Optimization of autotrophic cultivation of lipids production for biodiesel by Chlorella vulgaris with response surface methodology.China Biotechnology, 2010, 30 (8): 106-111.
[11] 王学奎. 植物生理生化实验原理和技术.第2版, 北京: 高等教育出版社, 2006.5. Wang X K. Experimental Principle and Technology on Physiology and Biochemistry of Plant. 2nd ed,Beijing: Higher Education Press, 2006.5.
[12] GB/T 17376-2008, 动植物油脂脂肪酸甲酯制备. 北京: 中国标准出版社, 2008,1-22. GB/T 17376-2008, Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. Beijing: China Standards Press, 2008,1-22.
[13] Orús M I, Marco E, Martínez F. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresource Technology, 1991, 38 (2-3): 179-184.
[14] Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34 (1): 1-5.
[1] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[2] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[3] 黎亮, 王泽建, 郭美锦, 储炬, 庄英萍, 张嗣良. 头孢菌素C产生菌的诱变育种及培养基优化[J]. 中国生物工程杂志, 2014, 34(8): 61-66.
[4] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[5] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[6] 高雪丽, 吴坚平, 徐刚, 杨立荣. 侧钩木霉的分离、鉴定及产孢条件优化[J]. 中国生物工程杂志, 2014, 34(2): 84-92.
[7] 王丹, 郑洪立, 纪晓俊, 高振. 响应面法对小球藻Chlorella zofingiensis高产虾青素条件的优化[J]. 中国生物工程杂志, 2013, 33(7): 71-81.
[8] 武为平, 陈捷, 李雅乾, 陈立杰, 段玉玺. 响应面法优化棘孢木霉产厚垣孢子发酵工艺[J]. 中国生物工程杂志, 2013, 33(12): 97-104.
[9] 刘华擎, 李灏. 生物质能源发酵中染菌及防控的研究进展[J]. 中国生物工程杂志, 2013, 33(12): 114-120.
[10] 张文, 张树清, 马晓彤, 何翠翠. 纳豆芽孢杆菌(Bacillus natto)发酵生产γ-聚谷氨酸过程中培养基组分的优化[J]. 中国生物工程杂志, 2013, 33(11): 44-50.
[11] 李瑞瑞, 刘佃磊, 杨晴, 郝琼, 姜凯凯, 李丕武. 响应面法优化黑曲霉产葡萄糖氧化酶的发酵条件[J]. 中国生物工程杂志, 2013, 33(10): 111-116.
[12] 刘鹏, 王泽南, 张仕发, 李莹. 丛梗孢酵母发酵产赤藓糖醇的响应面优化[J]. 中国生物工程杂志, 2011, 31(5): 69-74.
[13] 刘鹏 王泽南 张仕发 李莹. 丛梗孢酵母发酵产赤藓糖醇的响应面优化[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[14] 黄俊, 陈东, 黄日波. 纤维小体在燃料乙醇中的应用[J]. 中国生物工程杂志, 2011, 31(01): 103-108.
[15] 宋萍 戚小灵 胡燚 谢宁昌. 响应面法优化枯草芽孢杆菌产脂肪酶的合成培养基[J]. 中国生物工程杂志, 2010, 30(08): 100-105.