Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 84-92    DOI: 10.13523/j.cb.20140214
技术与方法     
侧钩木霉的分离、鉴定及产孢条件优化
高雪丽, 吴坚平, 徐刚, 杨立荣
浙江大学化学工程与生物工程学系 杭州 310027
Isolation, Identification of Trichoderma ghanense and Optimization of Spores Production
GAO Xue-li, WU Jian-ping, XU Gang, YANG Li-rong
Zhejiang University, Department of Chemical and Biological Engineering, Hangzhou 310027, China
 全文: PDF(1490 KB)   HTML
摘要: 从堆肥中分离得到一株具有较强拮抗植物病原菌活性的木霉菌,经过分子生物学方法鉴定为侧钩木霉(Trichoderma ghanense)。以该菌为出发菌株,对其固态发酵培养基进行优化,以期提高孢子产量。通过单因素筛选、Plackett-Burman实验、最陡爬坡实验和响应面分析确定影响孢子产量的最重要的三因素为蔗糖、玉米浆、硫酸镁,其最佳浓度分别为0.56%、0.56%和2.59%,最佳初始含水量为35%,最佳初始pH值为9。优化后的固态发酵培养基上,该菌孢子产量可达1.16×109CFU/g IDS,约是优化前的17倍。
关键词: 侧钩木霉分离鉴定固态发酵响应面法    
Abstract: A strain,having strong antagonistic activity toward phytopathogens, was identified as Trichoderma ghanense by the methods of molecular biology. This strain of Trichoderma ghanense as testing strain,optimization of the solid state fermentation medium was performed to improve the spore yield. Through the single factor experiment, Plackett-Burman experiment, the steepest ascent experiment and the response surface analysis, sugar,corn steep liquor and MgSO4were identified as the most important factors to influence the spore yield. The optimal concentration of the three factors is 0.56%, 0.56% and 2.59% respectively. The optimal initial water content of the medium was identified as 35% and the optimal initial pHwas identified as 9. The highest spore yield have been achieved as 1.16×109 CFU/g initial dry substrate (IDS) on the optimized solid state medium, which is 17 times higher than the initial medium.
Key words: Trichoderma ghanense    Isolation    Identification    Solid state fermentation    Response surface analysis
收稿日期: 2013-12-06 出版日期: 2014-02-25
ZTFLH:  Q815  
基金资助: 国家“973”计划(2011CB710800)、国家固态酿造工程技术研究中心开放课题(GCKF201111)资助项目
通讯作者: 杨立荣     E-mail: lryang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高雪丽
吴坚平
徐刚
杨立荣

引用本文:

高雪丽, 吴坚平, 徐刚, 杨立荣. 侧钩木霉的分离、鉴定及产孢条件优化[J]. 中国生物工程杂志, 2014, 34(2): 84-92.

GAO Xue-li, WU Jian-ping, XU Gang, YANG Li-rong. Isolation, Identification of Trichoderma ghanense and Optimization of Spores Production. China Biotechnology, 2014, 34(2): 84-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140214        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/84

[1] Harman GE, Howell CR, Viterbo A, et al. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol, 2004, 2 (1): 43-56.
[2] 宋晓妍, 孙彩云, 陈秀兰, 等. 木霉生防作用机制的研究进展. 中国农业科技导报, 2006, 8 (6): 20-25. Song X Y, Sun C Y, Chen X L, et al. Reasearch advances on mechanism of Trichoderma in biological control. Rev China Agr Sci Tech, 2006, 8 (6): 20-25.
[3] Cumagun C J R. Managing plant diseases and promoting sustainability and productivity with Trichoderma: the Philippine experience. J Agr Sci Tech-Iran, 2012, 14 (4): 699-714.
[4] Freeman S, Minz D, Kolesnik I, et al. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol, 2004, 110 (4): 361-370.
[5] Batta Y A. Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol Tec, 2007, 43 (1): 143-150.
[6] Sharma P, Patel A N, Saini M K, et al. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). J Agr Sci, 2012, 4(8): 65-73.
[7] Chen L H, Yang X M, Raza W, et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresource Technol, 2011, 102: 3900-3910.
[8] 王永东, 蒋立科, 岳永德, 等. 生防菌株哈茨木霉H-13固态发酵条件的研究. 浙江大学学报(农业与生命科学版), 2006, 32(6): 645-650. Wang Y D, Jiang L K, Yue Y D, et al. Studies on the solid fermentation conditions for the biocontrol agents of Trichoderma harzianum strain H-13. Journal of Zhejiang University (Agric. & Life Sci.), 2006, 32(6): 645-650.
[9] Abd-El-Khair H, Khalifa R K, Karima M, et al. Effect of Trichoderma species on damping off diseases incidence, some plant enzymes activity and nutritional status of bean plants. Am J Sci, 2011, 7(1): 156-167.
[10] Bai Z H, Jin B, Li Y J, et al. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci-China, 2008, 20: 353-358.
[11] 黄雪莲, 于新. 响应面优化绿色木霉菌培养基. 食品与生物技术学报, 2011, 30(5): 740-744. Huang X L, Yu X. Optimization of medium of Trichoderma viride using response surface methodology. Journal of Food Science and Biotechnology, 2011, 30(5): 740-744.
[12] Samuels G J, Dodd S L, Lu B S, et al. The Trichoderma koningii aggregate species. Stud Mycol, 2006, 56: 67-133.
[13] Song X Y, Shen Q T, Xie S T, et al. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett, 2006, 260: 119-125.
[14] 康萍芝, 张丽荣, 沈瑞清. 木霉菌对灰葡萄孢菌的拮抗作用. 内蒙古农业科技, 2008, 6: 49-51. Kang P Z, Zhang L R, Shen R Q. Antagonism effect of Trichoderma on Botrytis cinerea. Inner Mongolia Agricultural Science and Technology, 2008, 6: 49-51.
[15] 孙斐, 陈靠山, 张鹏英. 固态发酵麸皮和玉米芯生产拟康氏木霉孢子的研究. 中国农学通报, 2010, 26(6): 236-239. Sun F, Chen K S, Zhang P Y. The study of solid state fermentation of Trichoderma pseudokoningii spores with wheat bran and corncob. Chinese Agricultural Sciense Bulletin, 2010, 26(6): 236-239.
[16] Tronsmo A, Raa J. Antagonistic action of Trichoderma pseudokoningii against the apple pathogen Botrytis cinerea. Phytopath Z, 1977, 89: 216-220.
[17] 郝林华, 牛德庆, 陈靠山, 等. 拟康氏木霉液态发酵条件的研究. 菌物学报, 2005, 24(2): 235-244. Hao L H, Niu D Q, Chen K S, et al. Liguid fermentative condition of Trichoderma pseudokoningii. Mycosystema, 2005, 24(2): 235-244.
[18] Reino J L, Guerrero R F, Hernández-Galán R, et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev, 2008, 7: 89-123.
[19] 史凤玉, 朱英波, 杨文兰. 长枝木霉T8对水稻纹枯病菌拮抗的作用研究. 植物保护科学, 2005, 21(2): 264-265, 271. Shi F Y, Zhu Y B, Yang W L. Studies on antagonism of Trichoderma longibrachiatum against Rhizoctonia solania in rice. Chinese Agricultural Science Bulletin, 2005, 21(2): 264-265, 271.
[20] Yamazaki Y, Tojo M, Hoshino T, et al. Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, with species identity, pathogenicity to moss, and polygalacturonase activity. Fungal Ecol, 2011, 4: 15-21.
[21] 潘争艳, 傅俊范, 马亮, 等. 辽宁省药用植物根际土壤木霉属真菌的多样性. 浙江大学学报(农业与生命科学版), 2010, 36(4): 405-410. Pan Z Y, Fu J F, Liang M A, et al. Diversity of Trichoderma spp. isolated from medicinal plant rhizosphere soils in Liaoning Province. Journal of Zhejiang University (Agric. & Life Sci.), 2010, 36(4): 405-410.
[22] Schwarze F W, Jauss F, Spencer C, et al. Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biological Control, 2012, 61: 160-168.
[23] Yang H T, Maarten H R, Tang W H. Characterisation and identification of Trichoderma isolates from a South Australian soil suppressive to Rhizoctonia solani on wheat. Shandong Science, 2005, 18(3): 36-49.
[24] Banaay C G B, Cuevas V C, Cruz C M. Trichoderma ghanense promotes plant growth and controls disease caused by Pythium arrhenomanes in seedlings of aerobic rice variety apo. Philipp Agric Sci, 2012, 95 (2): 175-184.
[25] 潘玮, 穆常青, 蒋细良, 等. 木霉菌的孢子与土壤抑菌作用. 中国生物防治, 2006, 22(2)87-91. Pan W, Mu C Q, Jiang X L, et al. Chlamydospore and conidia of Trichoderma and soil fungistasis. Chinese Journal of Biological Control, 2006, 22(2)87-91.
[26] 王秉丽. 木霉粉剂的创制及在蔬菜病害生物防治中的应用. 上海:上海交通大学, 2011. Wang B L. Creation of Trichoderma powder and its application in biocontrol of vegetable disease. Shanghai:Shanghai Jiaotong University, 2011.
[27] Bhargav S, Panda BP, Ali M, et al. Solid-state fermentation: an overview. Chem Biochem Eng, 2008, 22(1): 49-70.
[28] 敖新宇, 程立君, 陈玉惠. 生防木霉SS003菌株(Trichoderma atroviride)的固体发酵工艺研究. 江西农业大学学报, 2012, 34(6): 1256-1261. Ao X J, Cheng L J, Chen Y H. The solid fermentation technology for bio-control strain SS003 of Trichoderma atroviride. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(6): 1256-1261.
[29] Kolombet L V, jigletsova S K, Derbyshev V V, et al. Studies of mycofungicid, apreparation based on Trichoderma viride, for plant infection control. Appl Microbiol Biot, 2001, 37(1): 98-102.
[30] 庄敬华, 高增贵, 刘限, 等. 不同发酵条件对木霉产孢类型的影响. 中国生物防治, 2005, 21(1)37-40. Zhuang J H, Gao Z G, Liu X, et al. Effect of fermentation factors on spores types of Trichoderma strain 23. Chinese Journal of Biological Control, 2005, 21(1)37-40.
[1] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[2] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[3] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[4] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[5] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[6] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[7] 王艳红,刘艳双,石德喜,朱保国,吕保磊,付诗雨,徐苗,王伟,殷奎德. 新型YdjM超家族成员的钠/氢逆向转运蛋白功能鉴定 *[J]. 中国生物工程杂志, 2018, 38(12): 32-40.
[8] 李容庆,权春善,张丽影,刘佳璐,张祥,尚菲. 人工抗原合成研究进展*[J]. 中国生物工程杂志, 2018, 38(12): 65-75.
[9] 崔帅,王作平,于江辉,肖国樱. 转基因水稻BPL9K-2事件特异性检测方法的建立 *[J]. 中国生物工程杂志, 2018, 38(11): 32-41.
[10] 张莉,丁涓,郝宇晨,叶城,蒲洋. 一株海洋微藻的鉴定及其原生质体制备条件优化 *[J]. 中国生物工程杂志, 2018, 38(11): 42-50.
[11] 张玉富, 王建文, 李松涛, 朱张亮, 路福平, 毛淑红, 秦慧民. 来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析[J]. 中国生物工程杂志, 2017, 37(6): 43-49.
[12] 吴懿, 张丽影, 权春善, 钟美玲, 王路路, 王冠天. 解淀粉芽孢杆菌Q-426群体感应系统ComX信息素前体肽的合成研究[J]. 中国生物工程杂志, 2017, 37(5): 38-44.
[13] 姚韧辉, 董卓, 李会. Gibberella intermedia C2转化4-雄甾烯-3、17-二酮的研究[J]. 中国生物工程杂志, 2017, 37(3): 73-77.
[14] 陈国强, 吴文涛, 王纪明, 廖韦红, 张海波, 咸漠, 雷廷宙, 魏玉西. 出芽短梗霉A5产胞外多糖发酵条件的优化及产物结构鉴定[J]. 中国生物工程杂志, 2017, 37(2): 54-62.
[15] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.