Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 61-69    
技术与方法     
WAVETM反应器和搅拌瓶中微载体球转球放大培养的比较
陆丽芳, 隋礼丽
通用电气医疗集团生命科学部 Fast Trak研发中心 上海 201203
WAVETM Bioreactors and Spinner Flasks: Comparison of the Process Performance of Microcarrier Bead to Bead Transfer and Scale up
LU Li-fang, SUI Li-li
Fast Trak China, GE Healthcare Lifesciences, Shanghai 201203, China
 全文: PDF(2089 KB)   HTML
摘要: 目的:哺乳动物细胞目前已广泛用于生物工程药物如单抗和疫苗的生产。而用于贴壁细胞规模化培养的微载体,也应时应需得以开发并应用于生物制药。贴壁细胞微载体培养在搅拌罐和WAVETM反应器中都能进行。而如要进行进一步的放大培养,球转球工艺不可或缺。为了发展球转球这一新的放大技术,以及考量WAVETM反应器这种新型大规模培养设备的应用性,大量的细胞培养和球转球实验在WAVETM反应器和搅拌瓶中进行。收集到的数据得以分析比较。方法:将Vero细胞分别接入WAVETM反应器和搅拌瓶中用微载体Cytodex 1进行培养。适当补充营养并控制温度、pH等培养条件使细胞增殖。长满微载体的细胞用清洗、消化等球转球工艺的一系列步骤而分离,并放大接种到新的培养体系。球转球工艺的有效性通过记录并统计分析细胞消化分离的回收率,以及细胞重新接种生长的存活力来评估。结果:统计学分析比较WAVETM反应器和搅拌瓶中得到的细胞分离回收率分别是67.56%和39.39%,数理统计P值小于0.000 3;细胞重新接种存活率分别是95.17%和78.45%,P值等于0.010 7。结论:在WAVETM反应器中进行的球转球放大工艺,其总体表现和有效性远高于在搅拌瓶中得到的结果。在WAVETM反应器中培养的Vero细胞有很好的细胞状态,作为种子链和生产用罐相比搅拌型反应罐均有很大的优越性。
关键词: WAVETM反应器微载体Cytodex细胞培养放大    
Abstract: Objective: Mammalian cell lines are widely used in biopharmaceuticals, such as the manufacturing of monoclonal antibodies, recombinant proteins and vaccines. For large scale adherent cell culture, microcarriers are developed and widely used in biopharmaceuticals. Adherent cell culture on microcarriers andbe done in both WAVETM reactors and stir tanks. However, to successfully scale up the microcarrier cultures, bead to bead transfer process is necessary. To develop bead to bead transfer, the new scale up technique, and evaluate the reliability of WAVETM reactor, a new generation of large scale fermenters, plenty of cell culture and bead to bead transfer experiments were done in WAVETM reactors and spinner flasks. The data were collected and analyzed. Method: Vero cells were inoculated and cultured with microcarrier Cytodex 1 in WAVETM reactors and spinner flasks, respectively. For good cell propagation, the culture conditions such as pH, temperature and nutrients were controlled appropriately. The cells grown confluent on the microcarriers were separated through bead to bead transfer process including wash, trypsin digesting, and re-inoculating, to be transferred a new scaled up culture. The efficiencies of bead to bead transfer process were evaluated through recording and analyzing the cell recoveries during wash and digestion, and cell growth viabilities after re-inoculum. Results: Statistical analysis showed that the average of cell recoveries of the bead to bead transfer processes from WAVETM reactors and spinner flasks were 67.56% and 39.39%, respectively. P value was below 0.000 3. The average inoculums re-attach efficiency from WAVETM reactors and spinner flasks were 95.17% and 78.45%, respectively. P value was 0.010 7. Conclusion: Bead to bead transfer process done in WAVETM reactors got much better performance in terms of cell recovery and cell viability, comparing with that in spinner flasks. Vero cells grown in WAVETM are in good conditions. As either seed train or production tank, WAVETM reactors wound be muchsuperior comparing with stir tanks.
Key words: WAVETM Bioreactor    Microcarrier    Cytodex    Cell culture    Scale up
收稿日期: 2012-06-04 出版日期: 2012-09-25
ZTFLH:  Q813  
通讯作者: 陆丽芳     E-mail: lifang.lu@ge.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陆丽芳
隋礼丽

引用本文:

陆丽芳, 隋礼丽. WAVETM反应器和搅拌瓶中微载体球转球放大培养的比较[J]. 中国生物工程杂志, 2012, 32(09): 61-69.

LU Li-fang, SUI Li-li. WAVETM Bioreactors and Spinner Flasks: Comparison of the Process Performance of Microcarrier Bead to Bead Transfer and Scale up. China Biotechnology, 2012, 32(09): 61-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/61

[1] Kistner O, Howard MK, Spruth M, et al.Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine,2007, 25(32): 6028-6036.
[2] Genzel Y, Behrendt I, König S, et al.Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine,2004, 22(17-18): 2202-2208.
[3] Trabelsi K, Majoul S, Rourou S, et al.Development of a measles vaccine production process in MRC-5 cells grown on Cytodex1 microcarriers and in a stirred bioreactor. Appl Microbiol Biotechnol,2012,93(3): 1031-1040.
[4] Microcarrier Cell culture-Principles and Methods. GE Healthcare Handbook, #18114062AB.
[5] Velez J O, Russell B J, Hughes H R, et al. Microcarrierculture of COS-1 cells producing Japanese encephalitis and dengue virus serotype 4 recombinant virus-like particles. J Virol Methods, 2008, 151(2):230-236.
[6] Liu C C, Lian W C, Butler M, et al. High immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine,2007, 25(1):19-24.
[7] Lupberger J, Mund A, Kock J, et al. Cultivation of HepG2.2.15 on Cytodex-3: higher yield of hepatitis B virus and less subviral particles compared to conventional culture methods.J Hepatol, 2006, 45(4):547-552.
[8] Bleckwenn N A, Bentley W E, Shiloach J, et al. Evaluation of production parameters with the vaccinia virus expression system using microcarrier attached HeLa cells.Biotechnol Prog, 2005, 21(2):554-561.
[9] Sun L Y, Lin S Z, Li Y S, et al. Functional Cells Cultured on Microcarriers for Use in Regenerative Medicine Research. Cell Transplantation, 2011, 20(1):49-62.
[10] Kistner O, Barrett P N, Mundt W, et al. A novel mammalian cell (Vero) derived influenza virus vaccine: Development,characterization and industrial scale production. Wiener Klinische Wochenschrift,1999, 111(5):207-214.
[11] Hundt B, Best C, Schlawin N, et al. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrierculture in 1-10 L scale.Vaccine, 2007, 25(20):3987-3995.
[12] 张立,严春,范卫民,等.Vero细胞的微载体培养——放大过程中的接种工艺. 华东理工大学学报,1998, 24(6):659-663. Zhang L, Yan C, Fan W M, et al. Inoculum Technology in Large-scaleCell Culture onMicrocarriers. Journal of East China University of Science and Technology, 1998, 24(6):659-663.
[1] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[2] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[3] 李智力, 易小萍, 储炬, 庄英萍, 张嗣良. PK-15细胞微载体悬浮培养生产猪细小病毒的工艺研究[J]. 中国生物工程杂志, 2015, 35(7): 62-67.
[4] 林美玲, 唐寅, 张明, 易小萍, 黄明志. 重组HSV-Ⅱ病毒疫苗的微载体悬浮培养生产工艺研究[J]. 中国生物工程杂志, 2014, 34(3): 68-78.
[5] 康跻耀, 张宁, 周炜清, 孙李靖, 张贵锋, 马光辉, 苏志国. 基于魔芋葡甘聚糖微球的胶原覆层型微载体的制备研究[J]. 中国生物工程杂志, 2013, 33(5): 44-49.
[6] 龚迪, 易小萍, 张元兴. MDCK细胞微载体悬浮培养放大工艺研究[J]. 中国生物工程杂志, 2012, 32(09): 55-60.
[7] 叶玲玲, 刘红, 李世崇, 扬振西, 刘兴茂, 王启伟, 陈昭烈. 腺病毒E1B-19K基因过表达对HEK293细胞生长和代谢的影响[J]. 中国生物工程杂志, 2012, 32(02): 57-62.
[8] 武晓云, 王世立, 牟忠祥. 肌间隙移植明胶海绵获取成体干细胞[J]. 中国生物工程杂志, 2011, 31(06): 6-11.
[9] 王芳,杜庆安,朱宛宛,吴迪,徐艳玲,关云谦,张愚. 小鼠胚胎干细胞分化扩增期连续低密度传代对原始细胞中Oct-4阳性细胞比例及神经分化能力的影响[J]. 中国生物工程杂志, 2009, 29(04): 39-45.
[10] 张彦鹏. 微载体系统规模化细胞培养研究[J]. 中国生物工程杂志, 2008, 28(专刊): 215-219.
[11] 马浙永,易小萍,张元兴. 二甲基亚砜作用下重组CHO细胞胞内乙型肝炎表面抗原的定位[J]. 中国生物工程杂志, 2008, 28(2): 16-20.
[12] 颜日明,张志斌,邱晓芳,曾庆桂,游海,朱笃. 杜仲细胞悬浮培养产黄酮及其动力学研究[J]. 中国生物工程杂志, 2008, 28(10): 60-65.
[13] 张英,王为,吕国军,于炜婷,郭昕,雄鹰,马小军. 表达内皮抑素的rCHO细胞的微囊化培养[J]. 中国生物工程杂志, 2007, 27(9): 1-7.
[14] 刘丽敏,刘华钢,黄巨恩,李校堃,肖健. 改构型酸性成纤维细胞生长因子对顺铂肾损害保护作用的实验研究[J]. 中国生物工程杂志, 2007, 27(6): 10-14.
[15] 图雅,曹贵方. 蒙古绵羊原始生殖细胞用于胚胎干细胞培养的研究[J]. 中国生物工程杂志, 2006, 26(11): 40-44.